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Abstract

A dark energy–like component in the early universe, known as early dark energy (EDE), is a proposed solution to
the Hubble tension. Currently, there is no consensus in the literature as to whether EDE can simultaneously solve
the Hubble tension and provide an adequate fit to the data from the cosmic microwave background (CMB) and
large-scale structure of the universe. In this work, we deconstruct the current constraints from the Planck CMB and
the full-shape clustering data of the Baryon Oscillation Spectroscopic Survey to understand the origin of different
conclusions in the literature. We use two different analyses, a grid sampling and a profile likelihood, to investigate
whether the current constraints suffer from volume effects upon marginalization and are biased toward some values
of the EDE fraction, fEDE. We find that the fEDE allowed by the data strongly depends on the particular choice of the
other parameters of the model, and that several choices of these parameters prefer larger values of fEDE than in the
Markov Chain Monte Carlo analysis. This suggests that volume effects are the reason behind the disagreement in
the literature. Motivated by this, we use a profile likelihood to analyze the EDE model and compute a confidence
interval for fEDE, finding fEDE= 0.072± 0.036 (68% C.L.). Our approach gives a confidence interval that is not
subject to volume effects and provides a powerful tool to understand whether EDE is a possible solution to the
Hubble tension.

Unified Astronomy Thesaurus concepts: Hubble constant (758); Cosmology (343); Cosmological parameters
(339); Dark energy (351)

1. Introduction

Measurements of the Hubble constant, H0, the present-day
expansion rate of the universe, obtained with different
techniques show a discrepancy known as the “Hubble tension”
(Bernal et al. 2016). Indirect measurements, which depend on
the assumption of a cosmological model, yield systematically
lower values of H0 than direct measurements, which do not or
only weakly depend on the assumption of a cosmological
model.

The most significant tension is seen between the (indirect)
inference of H0 from the cosmic microwave background
(CMB) data of the Planck mission assuming a flat Λ cold dark
matter (ΛCDM) cosmological model, H0= 67.37± 0.54 km
s−1 Mpc−1 (Planck Collaboration VI 2020), and the (direct)
local inference from the Cepheid-calibrated Type Ia supernovae
of the SH0ES project, H0= 73.04± 1.04 km s−1 Mpc−1 (Riess
et al. 2021). The statistical significance of the tension is 5σ.
Throughout this paper, we quote uncertainties at the 68%
confidence level (C.L.), unless noted otherwise.

This tension could hint at new physics beyond the flat
ΛCDM model. One of the proposed models to alleviate the
tension is early dark energy (EDE; Poulin et al. 2018, 2019;
Smith et al. 2020). In this model, the ΛCDM cosmology is
extended to include a dark energy–like component in the pre-
recombination era, which reduces the size of the sound horizon
and increases H0 (Bernal et al. 2016). EDE is typically
parameterized by three parameters: the initial value of the EDE

field (θi), its maximum fractional energy density ( fEDE), and the
critical redshift (zc) at which this maximum fraction is reached.
EDE was shown to reduce the tension between the values of

H0 (Poulin et al. 2018; Smith et al. 2020) inferred from the
CMB data of Planck (Planck Collaboration XI 2016), the
baryon acoustic oscillation (BAO) and redshift-space distortion
data of the Baryon Oscillation Spectroscopic Survey (BOSS;
Alam et al. 2017), the BAO measurements from the 6 Degree
Field Galaxy Survey (Beutler et al. 2011) and Sloan Digital
Sky Survey Main Galaxy Sample (Ross et al. 2015), the
Pantheon supernova sample (Scolnic et al. 2018), and the direct
measurement by the SH0ES collaboration (Riess et al. 2019).
They find f 0.107EDE 0.030

0.035= -
+ , which gives

H0= 71.49± 1.20 km s−1 Mpc−1.
However, it was pointed out in Hill et al. (2020) that

introducing EDE leads to a higher amplitude of matter density
fluctuations parameterized by Ωm and σ8, worsening the so-
called σ8 tension. They showed that including further large-
scale structure (LSS) probes such as the Dark Energy Survey
(Abbott et al. 2018), Kilo-Degree Survey (Hildebrandt et al.
2020), and Hyper Suprime-Cam (Hikage et al. 2019), which are
particularly sensitive to Ωm and σ8, weakens the evidence for
EDE. When including all probes but H0 from SH0ES, their
analysis yields an upper limit of fEDE< 0.06 at 95% C.L. A
similar constraint of fEDE< 0.072 at 95% C.L. (with
f 0.025EDE 0.025

0.006= -
+ ) is obtained when employing the full shape

of the galaxy power spectrum combined with the BAO data of
BOSS Data Release 12 (DR12) galaxies along with the Planck
data (Ivanov et al. 2020a). Concurrently, a similar analysis
from D’Amico et al. (2021) found fEDE< 0.08 at 95% C.L. for
the same data set and including the Pantheon supernova
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sample. These three papers conclude that EDE does not solve
the Hubble tension.

In the analyses of Hill et al. (2020), Ivanov et al. (2020a),
and D’Amico et al. (2021), all three EDE parameters
f z, ,i cEDE{ }q are varied, which is referred to as the “three-
parameter model.” Smith et al. (2021) argued that the reason
for the small preferred value of fEDE found by them is due to
volume effects upon marginalization and proposed alternative
approaches.4 In particular, they found fEDE= 0.072± 0.034 for
the same data set as in Ivanov et al. (2020a) when fixing two
EDE parameters z,i c{ }q , which is referred to as the “one-
parameter model.”Within the one-parameter model, they
observe that including LSS data decreases the evidence for
EDE similar to the three-parameter model; they relate this
tighter constraint on EDE to the lower clustering amplitude
preferred by LSS data compared to CMB data. The one-
parameter model was already explored earlier in Niedermann &
Sloth (2020) in the context of new EDE.

Currently, there is no agreement in the community as to
whether EDE can simultaneously solve the Hubble tension and
fit all available data sets. A new chapter in this discussion was
presented recently. Two groups (Hill et al. 2021; Poulin et al.
2021) independently reported on a 2σ–3σ preference for EDE
when analyzing the model using the CMB data of the Atacama
Cosmology Telescope (ACT; Choi et al. 2020). South Pole
Telescope data (Dutcher et al. 2021) are consistent with both
ACT and Planck results (Posta et al. 2021).

One question that remains open is, what is the reason behind
this disagreement? The root of this seems to lie in the Markov
Chain Monte Carlo (MCMC) sampling of the three parameters
of the EDE model. For fEDE= 0, the EDE model is degenerate
with ΛCDM for any choice of θi and zc. Therefore, the
parameter volume for fEDE= 0 is larger than for every fEDE> 0.
This can lead to a preference for fEDE= 0 in the marginalized
posterior, affecting the inferred amount of EDE allowed by the
data. On the other hand, fixing some parameters of the model,
as for the one-parameter model, is an incomplete analysis, as
stated in Smith et al. (2021); the results might depend on the
particular choice of the parameters.

In this paper, we deconstruct the current constraints on the
EDE model from the CMB and BOSS full-shape clustering
data. Our goal is to understand where the disagreement in the
literature comes from and check if volume effects are indeed
present. In particular, we answer the following questions. Is the
three-parameter model affected by the two unconstrained
parameters θi and zc or volume effects? Do the results of the
one-parameter model depend on the particular choice of θi and
zc, and how well can the results be generalized to the full three-
parameter model? How would the constraints on fEDE change if
those effects were eliminated?

To this end, we perform two analyses: a grid sampling and a
profile likelihood. With the grid sampling, we explore the
parameter space of z,i c{ }q by fixing them to a wide range of
values and performing the one-parameter analysis. This
analysis shows that higher values of fEDE are consistent with
the data, which suggests that the three-parameter MCMC
analysis is affected by volume effects, and that there is a strong
dependence of fEDE on the particular choice of z,i c{ }q . This
makes it difficult to generalize the results of the one-parameter
model. To confirm the presence of volume effects, we perform

a frequentist-statistic analysis using a profile likelihood. We
find that a considerably larger fEDE is preferred by the data
compared to the Bayesian MCMC analysis, confirming that
volume effects affect the three-parameter analysis.
The rest of this paper is organized as follows. In Section 2,

we describe the EDE model. In Section 3, we deconstruct the
current constraints using the grid and the profile likelihood. In
Section 4, we construct a new confidence interval using the
profile likelihood. We discuss the results and conclude in
Section 5.

2. EDE Model

The idea behind early-time solutions to the Hubble tension is
to reduce the sound horizon and hence increase the inferred
value of H0 (Bernal et al. 2016). The sound horizon,

*
r c z dz H zs z s ( ) ( )ò=

¥
, where z* is the redshift of the last

scattering surface, cs(z) is the sound speed in the baryon-photon
plasma, and H(z) is the expansion rate of the universe, is
dominated by contributions near the lower bound of the
integral.
EDE (Kamionkowski et al. 2014; Karwal & Kamion-

kowski 2016; Caldwell & Devulder 2018) is an extra
component added to the energy density budget near z*, which
increases H(z) and lowers rs. This can be achieved by a
pseudoscalar field, f, which obeys the following requirements:
(i) it starts becoming relevant at matter–radiation equality, (ii) it
behaves like dark energy at early times, and (iii) its energy
density dilutes faster than the matter density after z*. To model
this behavior, the canonical EDE model is given by the
potential (Poulin et al. 2019)

V V f1 cos , 1n
0( ) [ ( )] ( )f f= -

where V0=m2f 2, m is the mass of f, and f is the spontaneous
symmetry breaking scale.
The parameters of the model can be rewritten in terms of the

phenomenological parameters f z n, , ,i cEDE{ }q , where fEDE is
the maximum fraction of EDE at the critical redshift zc, and θi
is the initial value of the dimensionless field, θ≡ f/f. A larger
value of fEDE leads to a higher H0. To solve the Hubble tension,
it was predicted that fEDE; 0.1 would be necessary (Knox &
Millea 2020).
The EDE field f in a cosmological background with the

potential given in Equation (1) behaves like dark energy
initially, with the field essentially frozen. Once H(z) becomes
smaller than the effective mass meff= d2V(f)/df2, f starts
decaying and oscillating at the bottom of the potential with an
effective, time-averaged equation-of-state parameter of
〈w〉= (n− 1)/(n+ 1). Here we choose n= 3 as in the previous
analyses, which was shown to dilute sufficiently fast to satisfy
the third requirement (Poulin et al. 2019; Smith et al. 2020).

3. Deconstructing the Current Constraints on the EDE
Model

3.1. Data and Methodology

For our analysis, we use a similar setup as in Ivanov et al.
(2020a). We combine the following publicly available exten-
sions of the Einstein–Boltzmann solver CLASS (Blas et al.
2011; Lesgourgues 2011):5 CLASS_EDE (Hill et al. 2020),

4 An exploration of volume effects with an averaging method can be found in
the Appendix of Ivanov et al. (2020a).

5 The code used for this analysis is publicly available at https://github.com/
LauraHerold/CLASS-PT_EDE.
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which evolves the EDE field as a pseudoscalar field up to linear
order in perturbations, and CLASS-PT (Chudaykin et al.
2020), which is based on the effective field theory (EFT) of
LSS (Baumann et al. 2012; Carrasco et al. 2012) and allows
one to model the galaxy power spectrum up to mildly nonlinear
scales. We perform an MCMC inference with MontePython
(Brinckmann & Lesgourgues 2018) using the Metropolis–
Hastings algorithm (Metropolis et al. 1953; Hastings 1970).

Our data set consists of the Planck 2018 TT+TE+EE
+lowℓ+lensing likelihoods (Planck Collaboration VI 2020)
along with the BOSS DR12 full-shape likelihood based on the
EFT of LSS presented in D’Amico et al. (2020) and Ivanov
et al. (2020b). Note that this is a slightly different data set than
in Ivanov et al. (2020a) and Smith et al. (2021), who also
included the BOSS (reconstructed) BAO likelihood. We have
checked that including the reconstructed BAO data in addition
does not lead to a large change of our conclusions. Recently,
there has been an update on the BOSS window function from
Beutler & McDonald (2021) that might impact the conclusions
in the previous analysis cited here. To compare with the
published constraints, we do not use the new window
functions.

We sample the ΛCDM parameters ωb, ωCDM, θs, As, ns, and
τreio assuming flat priors, along with the Planck and EFT
nuisance parameters. In Section 3.2, we assume fEDE ä [0.001,
0.5], and in Sections 3.3 and 4, we assume θi ä [0.1, 3.1] and

zlog 3, 4.3c( ) [ ]Î . Following the convention of the Planck
collaboration (Planck Collaboration VI 2020), we model the
neutrino sector by two massless and one massive neutrino
species with mν= 0.06 eV.

3.2. Grid Sampling

In this section, we perform our first analysis to study how
much the conclusions of Smith et al. (2021) drawn from the
one-parameter model depend on the particular choice of
θi= 2.775 and zlog 3.569c( ) = . An exploration of the effect of
θi, zc on cosmological observables can be found in Smith et al.
(2020), Poulin et al. (2019), and Lin et al. (2019).

The potential problem encountered in the MCMC explora-
tion of the three-parameter model is a preference for small fEDE
due to volume effects upon marginalization over θi and zc. We
investigate this problem as follows. To explore the dependence
of the fEDE constraints on θi and zc, we run several MCMC
inferences, where we keep θi and zc fixed to different values
and vary only fEDE. We choose six values in the typical prior
range of θi ä [0.1, 3.1] and seven values in the typical prior
range of zlog 3, 4.3c( ) [ ]Î :

z
0.3, 0.8, 1.3, 1.8, 2.3, 2.8 ,

log 3.1, 3.3, 3.5, 3.7, 3.9, 4.1, 4.3 .
i

c

{ }
( ) { }
q =
=

Throughout this paper, log denotes the logarithm with base 10.
This gives a 6× 7 grid of MCMC analyses. For each MCMC,
we infer the mean fraction of EDE, fEDE

¯ , depending on the
choice of θi and zc. We run every MCMC until the Gelman–
Rubin convergence criterion R− 1< 0.1 is reached. Our results
are summarized in Figure 1.

We find that fEDE
¯ strongly depends on the particular choice

of θi and zlog c( ). There are choices of θi and zlog c( ) that allow
for higher fEDE. For example, θi= 2.8 and zlog 3.5c( ) = (which
are close to the values chosen by Smith et al. 2021, θi= 2.775
and zlog 3.569c( ) = ) allow for particularly high

f 0.057EDE 0.034
0.027= -

+ , the highest found in the grid. The authors
pointed out that this choice of z,i c{ }q is reasonable, since it is
obtained from the best-fit cosmology to Planck data. However,
for θi= 1.8 and zlog 3.7c( ) = (which are similar to the mean
values found in Ivanov et al. 2020a, θi= 2.023 and

zlog 3.71c( ) = ), we find f 0.017EDE 0.016
0.004= -

+ . This shows that
the particular choice of θi and zlog c( ) made in Smith et al.
(2021) is the reason for a higher fEDE than found in Ivanov et al.
(2020a). We point out that the best-fit and mean values quoted
in Ivanov et al. (2020a; best-fit values θi= 2.734 and

zlog 3.52c( ) = ) correspond to choices of θi and zlog c( ) that
allow for high and low values of fEDE, respectively.
We also explore the dependence of the best-fit fEDE and the

Δχ2 as a function of θi and zc in Appendix A, finding a similar
pattern as in Figure 1. We show that the choice of θi= 2.8 and

zlog 3.5c( ) = , which gives the highest mean and best fit of
fEDE, has the smallest χ2.
As the constraint on fEDE depends strongly on the particular

choice of z,i c{ }q , the analysis of the one-parameter model
presented in Smith et al. (2021) might have been biased. Our
result also shows that, if z,i c{ }q cannot be constrained, as in the
MCMC analysis of the three-parameter model (Ivanov et al.
2020a), it might lead to misleading constraints on fEDE.
Our grid method is not plagued by volume effects, since

there is no larger prior volume at fEDE= 0 compared to
fEDE> 0 when θi and zlog c( ) are fixed. This coarse-grained
exploration of the z,i c{ }q parameter space made with the grid
shows that higher values of fEDE are allowed for a considerable
part of the parameter space and present a good fit to the data.
This indicates that volume effects might be present in the three-
parameter MCMC analysis and that, when this effect is
eliminated, the preference for a smaller fEDE in the posterior
is weakened.
Motivated by this, in the next section, we perform a

frequentist analysis using profile likelihoods, which does not
suffer from volume effects.

3.3. Profile Likelihood

Comparison of the results obtained from Bayesian and
frequentist analyses is useful for checking if priors or
marginalization affect the results (Cousins 1995). A profile
likelihood is a standard tool in frequentists’ statistics. To
construct a profile likelihood, one fixes the parameter of
interest, i.e., in our case, fEDE, to different values and
maximizes the likelihood  (or minimizes 2 ln2 c = - ) with
respect to all of the other parameters of the model, i.e., all
ΛCDM parameters, θi and zc, as well as all nuisance
parameters, for every choice of the parameter of interest
( fEDE). TheΔχ2 as a function of the parameter of interest is the
profile likelihood (see, e.g., Planck Collaboration Int.
XVI 2014, for an application to the Planck data).
For the minimization, we adopt the method used in

Schöneberg et al. (2021). For every fixed value of fEDE, we
first run a long MCMC (with at least 104 accepted steps) until
the Gelman–Rubin criterion R− 1< 0.25 is reached. This
yields a reasonable estimate for the best-fit values and
covariance of all other parameters. Second, we run three small
chains with successively decreasing step size (decreasing
temperature) and enhanced sensitivity to the likelihood
difference. This is done with a slightly modified Metropolis–
Hastings algorithm as described in Schöneberg et al. (2021).
Since they found that in the context of EDE and other solutions
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to the Hubble tension, this method was less likely to get stuck
in local minima than algorithms based on gradient descent,
such as MIGRAD (James & Roos 1975), we adopted the same
approach.

The results of the minimization are shown as the markers in
Figure 2. For a parameter following a Gaussian distribution,
one would expect a parabola, which is a good fit for
fEDE< 0.15 (gray line). The minimum of the curve is the
minimum χ2( fEDE) and shows the best-fit value for fEDE. From
the profile likelihood, one can already see that our best-fit value
lies near the upper bound, fEDE< 0.072 (95%C.L.), of Ivanov
et al. (2020a). This is a strong indication that the MCMC
analysis of the three-parameter model is plagued by volume
effects. The profile likelihood does not suffer from volume
effects, since the minimum χ2( fEDE) is the same as the
maximum-likelihood estimate.

We report the best-fit values of all parameters for fEDE= 0,
0.07, and 0.11 in Appendix B. We found that the best-fit values
of z,i c{ }q are approximately constant for all fixed values of
fEDE and fluctuate within a few percent around zlog 3.56c( ) =
and θi= 2.75. Note that these values are very close to the ones
adopted in the one-parameter model in Smith et al. (2021).

4. Constructing Confidence Intervals: Profile Likelihood

To construct confidence intervals from the profile likelihood
shown in Figure 2, we use the prescription introduced by
Feldman & Cousins (1998), which is suitable for a parameter
with a physical boundary like fEDE, which has to lie between
zero and 1. The Feldman–Cousins prescription is based on the
likelihood ratio

R x
x

x
, 2

best

( ) ( ∣ )
( ∣ )

( )



m
m

=

where x is the observable or measured value (it can take on all
possible values for fEDE), μ is the true value of fEDE (which will
be read off at the minimum of the parabola), and μbest is the
physically allowed value μ for which, for a given x, the
likelihood x( ∣ ) m is maximized; since μbest> 0, it is μbest= x
for x� 0 and μbest= 0 for x< 0. The confidence interval [x1,

x2] is chosen such that R(x1)= R(x2) and

x xd , 3
x

x

1

2

( ∣ ) ( )ò m a=

where α is the C.L., e.g., α= 0.6827 for a 68.27% C.L. To
shorten the notation, we denote 68.27% C.L. as 68% C.L. in the
remainder of the paper. For a given μ, the integral is solved
numerically and tabulated by Feldman & Cousins (1998). The
Feldman–Cousins prescription unambiguously determines
whether one parameter should be quoted as an upper/lower
limit or a central confidence interval. Here we find a central
confidence interval at the 68% C.L. By reading off μ at the
minimum of the parabola shown in Figure 2, we find
fEDE= 0.072± 0.036 ( f 0.072EDE 0.060

0.071= -
+ at 95% C.L.).

The upper and lower bounds of the 68% confidence interval
are shown in Figure 2 as the vertical dashed lines. They
coincide with the confidence intervals constructed by the
Neyman prescription (Neyman 1937; interval between parabola
points that intersect with Δχ2= 1), which is only valid far
away from a physical boundary.

5. Discussion and Conclusion

In this paper, we used the grid sampling and profile-
likelihood methods to understand the difference in the
constraints on the EDE model reported in the literature (Ivanov
et al. 2020a; D’Amico et al. 2021; Smith et al. 2021) using the
Planck CMB and the BOSS full-shape galaxy clustering data.
With the grid sampling, we showed that the inferred mean and
best-fit values of fEDE depend strongly on the values of z,i c{ }q .
This finding is relevant, since the posterior distributions in the
full three-parameter model shown in Ivanov et al. (2020a, their
Figure 5) indicate that θi and particularly zc are poorly
constrained by the Planck and BOSS data. Also, depending
on the particular choice of z,i c{ }q made in the one-parameter
model, one could draw different conclusions about the amount
of EDE allowed by the data. The choice made in Smith et al.
(2021) is an example of a choice that allows for a high value of
fEDE and therefore a larger effect on H0. However, even for the
choice θi= 2.8 and zlog 3.5c( ) = , which gives the highest

Figure 1. Mean values of fEDE for different fixed values of θi and zlog c( ).
Every value in this 6 × 7 grid is determined by a full MCMC analysis.

Figure 2. Profile likelihood of the fraction of EDE, fEDE, from the Planck CMB
and the BOSS full-shape galaxy clustering data. We show

2 ln2
max( ) cD = - , where max is the maximum likelihood (green

markers) and a parabola fit (gray line). The confidence interval is constructed
using the Feldman–Cousins prescription (Feldman & Cousins 1998; vertical
dashed lines). It is indistinguishable from the interval constructed from the
intersection of the parabola with Δχ2 = 1 (horizontal dotted line).
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value of fEDE in our grid method, we find H 69.520 1.21
0.95= -

+ km
s−1 Mpc−1, which only partially alleviates the Hubble tension.

Based on the hints of the grid analysis, we constructed the
profile likelihood for fEDE, which is not subject to volume
effects upon marginalization in the MCMC chain. Using the
Feldman–Cousins prescription, we constructed the confidence
interval, finding fEDE= 0.072± 0.036, providing a new and
robust constraint on the EDE model.

In Figure 3, we compare the confidence interval from this
work based on the profile likelihood to previous work. For
reference, we mark fEDE= 0.1. Our best-fit value, fEDE= 0.072,
is at the 95% confidence upper limit found in Ivanov et al.
(2020a), which is fEDE< 0.072. This shows that there is an
effect in the MCMC analysis that drives the constraint on fEDE
closer to zero. The most plausible explanation is volume effects
upon marginalization due to the large prior volume in θi and zc
when fEDE→ 0. On the other hand, our best-fit value and the
68% C.L. are similar to those found in Smith et al. (2021), with
the same central value and an only slightly larger confidence
interval. Nevertheless, their result was obtained within the one-
parameter model, which has a strong dependence on the
particular choice of θi and zc, as shown in Section 3.2, and
cannot be used to draw conclusions about the full three-
parameter model.

We suggest that the profile likelihood is a more suitable
method to analyze the EDE model and determine fEDE. The
confidence intervals obtained through this method do not suffer
from volume effects or a reduced parameter space.
We did not construct confidence intervals for H0 in this

paper. This study is currently in progress, together with the
analysis of the EDE model with different data sets.
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Appendix A
Best Fit and Δχ2 of Grid Analysis

The results of the grid analysis, showing the dependence of
the best-fit fEDE and Δχ2 as a function of θi and zc, can be seen
in Figure 4.

Appendix B
Best-fit Values of the Parameters for Different Cosmologies

In Table 1, we show the best-fit parameters obtained with the
minimization described in Section 3.3 for the ΛCDM
cosmology and EDE cosmologies with fixed fEDE. The first
eight parameters in the table are varied in the MCMC, and the
last six parameters are derived parameters. At the bottom, we
quote the minimum χ2. The cosmology with fixed fEDE= 0.07
is close to the best fit computed from the minimum of the
parabola fit, and fEDE= 0.11 is at the higher end of the 68%
confidence interval.
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Figure 3. Summary of the current constraints on fEDE from the Planck CMB
and the BOSS full-shape galaxy clustering data by different methods: Ivanov
et al. (2020a) with an MCMC inference of the three-parameter model in green
(95% C.L.), Smith et al. (2021) with an MCMC inference within the one-
parameter model in blue (68% C.L.), and our results obtained with the
Feldman–Cousins prescription based on the profile likelihood in purple (68%
C.L.). For comparison, we show the recent ACT results in gray (Hill
et al. 2021; 68% C.L.). The vertical gray dashed line marks fEDE = 0.1.

Figure 4. Best-fit values of fEDE (left) and Δχ2 (right) for different fixed values of θi and zlog c( ). Every value in this 6 × 7 grid is obtained with the minimization
procedure described in Section 3.3.
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Table 1
Best-fit Parameters for Different Cosmologies

Parameter
Best-

fit ΛCDM
Best-fit

fEDE = 0.07
Best-fit

fEDE = 0.11

100 ωb 2.245 2.259 2.270
ωcdm 0.1191 0.1260 0.1304
100 ∗ θs 1.042 1.042 1.041

Aln 10 s
10( ) 3.044 3.056 3.064

ns 0.9681 0.9794 0.9872
τreio 0.0548 0.0549 0.0553

zlog c( ) L 3.55 3.56
θi L 2.76 2.77

zreio 7.701 7.827 7.924
Ωm 0.3093 0.3046 0.3012
YHe 0.2454 0.2479 0.2480
H0 [km s−1

Mpc−1]
67.80 70.00 71.45

10+9As 2.099 2.125 2.141
σ8 0.808 0.825 0.836

Min. χ2 3237.4 3233.7 3234.6
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