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ABSTRACT 
 
In the present paper the numerical study of effects of thermal Grashof parameter and concentration 
Grashof parameter on steady MHD Casson fluid flow through non-Darcy porous media, over a 
nonlinear boundary surface under slip-conditions is explored. By suitable similarity transformations, 
the governing boundary layer equations are transformed to ordinary differential equations. The 
method of the numerical computation with bvp4c, a MATLAB program is applied to solve these 
equations. The effects of thermal Grashof, concentration Grashof and stretching  index, velocity slip, 
thermal slip, and concentration slip parameters on velocity, heat transfer, and concentration profiles, 
Skin-friction, local  Nusselt number and local Sherwood number are computed and discussed 
numerically and presented through tables and graphs. 
 

 

Original Research Article 



 
 
 
 

Kala; AJOPACS, 1(2): 1-17, 2016; Article no.AJOPACS.31014 
 
 

 
2 
 

Keywords: Magnetohydrodynamics; Casson fluid, thermal Grashof number; slip parameters. 
 

NOMENCLATURE AND SI UNITS 
 
   : dynamic viscosity(kgm

-2
s

-1
) 

   : kinematic viscosity(m-2s-1) 
B  : magnetic field(N/(mA)) 
H   : convective heat transfer 

coefficient(W/m2K) 
c  : Specific heat (J/kgK) 
Cp  :  Specific heat at constant pressure 
D  :  mass diffusivity( m

2
s

-1
) 

G  :  acceleration due to gravity (ms
-2

) 
k  :  thermal conductivity(Wm-1 K-1) 
m  : mass kg 
V : volume m3 
  :  density kg/m

3
 

T  :  Temperature of fluid (K) 
T   :  time(s) 
u  :  horizontal component of velocity(m/s) 
v   :  vertical component of velocity(m/s) 

   :  thermal expansion coefficient(K
-1

) 

GrT : thermal Grashof number 
Grc : mass(concentration) Grashof number 
M  : magnetic parameter 
n  : stretching index parameter 
Nu  : local Nusselt number 
Pr  : Prandtl number Prandtl number 
Re  : local Reynold number 
Sc  : Smidth number 
Sh  : local Sherwood number 
C  : concentration of fluid 
x : distance along the plate distance along 

the plate 
     : thermal diffusivity 

      : similarity variable 

x, y : Cartesian coordianates 

   : dimensionless temperature 

   
: Dimentiosless stream function 

 

1. INTRODUCTION 
  

Many  natural, industrial as well as biological 
fluids (such as mud, condensed milk, glues, 
lubricating greases, paints, sugar solution, 
shampoos and tomato paste, polymers, liquid 
detergents, blood, fruit juices etc.) change their 
viscosity or flow behaviour under stress; and thus 
deviate from the classical Newton’s law of 
viscosity. Different models of non-Newtonian 
fluids, based on their diverse flow behaviours 
have been discussed by the researchers. 
 

The rheological model was introduced originally 
by Casson [1] in his research on a flow equation 
for pigment oil-suspensions of printing ink. Bird et 

al. [2] investigated the rheology and flow of visco-
plastic materials. He reported that Casson model 
constitutes a plastic fluid model which exhibits 
shear thinning characteristics, yield stress, and 
high shear viscosity. Casson fluid behaves as 
solid when the shear stress is less than the yield 
stress and it starts to deform when shear stress 
becomes greater than the yield stress. 

 
The fundamental analysis of the flow field of non-
Newtonian fluids in a boundary layer adjacent to 
a stretching sheet or an extended surface is very 
important and is an essential part in the study of 
fluid dynamics and heat and mass transfer.  

 
Sakiadis [3] studied boundary layer behaviour on 
continuous solid surfaces: II. The boundary layer 
on continuous flat surface. Crane [4] focused on 
the flow past a stretching plane. Nield et al. [5] 
investigated convection in porous media.  

 
Mukhopadhyay [6] discussed Casson fluid flow 
and heat transfer over a nonlinearly stretching 
surface. Mustafa et al. [7] presented model for 
flow of Casson nanofluid past a non-linearly 
stretching sheet considering magnetic field 
effects.  Medikare et al. [8] gave attention on 
MHD stagnation point flow of a Casson fluid over 
a nonlinearly stretching sheet with viscous 
dissipation. 
 
Thermal radiation effects play important role in 
heat transfer control in polymer processing  
industry; the quality of  final product  depends on 
heat controlling factors. Pramanik [9] studied 
Casson fluid flow and heat transfer past an 
exponentially porous stretching surface in the 
presence of thermal radiation. Raju et al. [10] 
focused on heat and mass transfer in 
magnetohydrodynamic Casson fluid flow over an 
exponentially permeable stretching surface. 
Saidulu et al. [11] discussed slip effects on MHD 
flow of Casson fluid over an exponentially 
stretching sheet in presence of thermal radiation, 
heat source/sink and chemical reaction. 
 
In chemical reactions, the rate of the chemical 
reaction depends upon the concentration of the 
species itself. A reaction rate is of nth order, if 
the reaction rate is proportional to the nth power 
of concentration.  In particular, a reaction is of 
first order, if the rate is directly proportional to the 
concentration itself. Sharada et al. [12] 
investigated MHD mixed convection flow of a 
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casson fluid over an exponentially stretching 
surface with the effects of Soret, Dufour, thermal 
radiation and chemical reaction. Mukhopadhyay 
et al. [13] discussed exact solutions for the flow 
of Casson fluid over a stretching surface with 
transpiration and heat transfer effects. Hayat et 
al. [14] focused on Soret and Dufour effects on 
magnetohydrodynamic (MHD) flow of Casson 
fluid.  
 
The mass flux created by temperature gradient is 
known as thermal –diffusion (Soret) effect                      
and the energy flux created by temperature 
gradient is known as diffusion- thermo (Dufour) 
effect. 
 
Mahdy [15] gave attention on heat             
transfer and flow of a Casson fluid due to a 
stretching cylinder with the Soret and Dufour 
effects. Animasaun [16] studied effects of 
thermophoresis, variable viscosity and thermal 
conductivity on free convective heat and mass 
transfer of non-Darcian MHD dissipative Casson 
fluid flow with suction and nth order of chemical 
reaction. 
 
Ullah et al. [17] investigated effects of slip 
condition and Newtonian heating on MHD flow of 
Casson fluid over a nonlinearly stretching sheet 
saturated in a porous medium.  
 
Some recent studies on the analysis of velocity, 
heat and mass transfer of Casson fluid flow can 
be found in Refs [18–31]. 
 
We consider (1) non-Darcy  porous medium in 
momentum  equation, (2) thermo-diffusion 
(Dufour) term in energy equation,  (3) mass 
equation, (4) diffusion -thermo (Soret) term in the 
mass equation and (5) velocity slip factor, 
thermal slip factor, and mass slip factor in 
boundary conditions of velocity, temperature, and 
concentration, and (6) fluid flow over nonlinear 
surface respectively. In the study of references 
considered above, these terms simultaneously in 
one problem, are not investigated. 
 
The present work is the extension of Ullah et al. 
[17] work by considering above terms. 
 
It deals with the numerical study of effects of 
thermal Grashof parameter and concentration 
Grashof parameter on steady MHD Casson   
fluid flow through non-Darcy porous media, over 
a nonlinear boundary surface under slip-
conditions. 

2. MATHEMATICAL FORMULATION OF 
THE PROBLEM 

 
In the formulation of the problem we consider 
following assumptions. Casson fluid is 
incompressible and electrically conducting. Flow 
is steady, laminar and two dimensional over a 
nonlinearly stretching sheet. Flow region is in 
non-Darcy porous medium. It is under the 

influence of transverse magnetic field B .The 
sheet is stretched nonlinearly along the x-axis 

(i.e. y=0) with velocity 
n

w xcxu )( ;origin is 

taken as fixed and the fluid flow is confined to 

y>0.  Here c   is constant and )0( nn  is the 

nonlinear stretching index (sheet) parameter; 

1n  represents the linear sheet case and 

1n  is for nonlinear case; change in n (the 
stretching index parameter) affect the shape of 
the surface over which fluid flow occurs; shape of 
the surface has effect on the flow velocity, 
temperature and mass concentration of the fluid 
in the boundary layer region.  
 
The magnetic Reynolds number of the flow is 
taken to be small enough so that induced 
magnetic field is assumed to be negligible in 
comparison with applied magnetic field so that 

),0),(,0( xBB   where )(xB is the applied 

magnetic field, acting normal to the plate and 
varies in strength as a function of x. The flow is 
assumed to be in the x-direction which is taken 
along the plate and y-axis is normal to it. There is 

a constant suction/injection velocity wv  normal to 

the plate. The change in temperature produces 
the density variation and affects fluid flow; it is 
called thermal Grashof effect. The change in 
concentration produces the density variation and 
affects the fluid flow; it is called mass 
(concentration) Grashof effect. On the fluid flow, 
effect of temperature and concentration is also 
considered.  
 

Under above assumptions the rheological 
equation for incompressible flow of Casson fluid 
is given by (Sharada et al. [12], Mukhopadhyay 
et al. [13]) 
 

.
)2/(2

,)2/(2












cjicyB

cjiyB
ji

ep

ep






 
 

where jiji ee .  And jie  is the th),( ii

component of the deformation rate,   is the 
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product of the components of deformation,  c  is 

critical value of the product based on the non-

Newtonian model, B   is the plastic dynamic 

viscosity of the non-Newtonian fluid, and yp is 

the yield stress of the fluid. Yield stress is 
specific to a Casson fluid i.e. it depends upon the 
nature of fluid. Casson fluid behaves as solid 
when the shear stress is less than the yield 
stress and it starts to deform when shear stress 
becomes greater than the yield stress. 
 

The viscosity and thermal conductivity of fluid are 
assumed to be constant. There is thermo-
diffusion effect as well as diffusion-thermo effect. 
The pressure gradient, body forces and Joule 
heating are neglected compared with the effect 
of viscous dissipation. The temperature and 
concentration of the stretching surface are 
always greater than their free stream values. The 
flow configuration and the coordinate system are 
shown in Fig. 1. 

Under the above assumptions and using 
Bossinesque approximation, boundary layer 
equations (Ullah et al. [17]) for flow with heat and 
mass transfer of Casson fluid are given by the 
following equations. 
 
The continuity equation: 

 

0









y

v

x

u
,                                                   (1)                                                                      

 
The equation of momentum:      
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Fig. 1. Physical model and coordinate system 
 

The Energy Equation: 
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The Mass equation: 
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where u  and v  are velocity components along 
x  and y  axes, respectively,   is fluid density, 

  is kinematic viscosity,   is dynamic viscosity, 

yB p/2   is the Casson fluid parameter, 

  is the electrical conductivity of the fluid  which 

is assumed to be constant, 
T  is coefficient of 

thermal expansion, C  is coefficient of 

concentration expansion, WT  is temperature of 

the fluid at the stretching sheet, T  is 
temperature of the fluid within the boundary 

layer, T  is temperature of the fluid outside the 

boundary layer, k  is thermal conductivity of the 

fluid, PC  is specific heat at constant pressure  

p , WC  is concentration of the fluid at the 

stretching sheet, C  is concentration of the fluid 

within the boundary layer region, C  is 

concentration of the fluid outside the boundary 

layer region, MD  is chemical molecular 

diffusivity. Here, g  is acceleration due to gravity. 

The applied magnetic field is 2

1

0




n

xBB , 

where 0B is assumed to be constant.  

 
Boundary conditions (Ullah et al. [17]): 
 

.,,0:

)(),(,0,
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1:0 1
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 (5) 

 

Here 2

1

1 )(





n

xNxN denotes velocity of slip factor; it depends upon x. 2

1

0)(



n

Ts xchxh  

represents heat transfer parameter for Newtonian heating or temperature slip factor. And 

2

1

0)(



n

cc xchxh  represents concentration slip factor. 

 

2.1 Dimensional Analysis 
 
We consider following dimensionless variable (Ullah et al. [17])   to transform the system of equations 
(2), (3), (4) and (5) into a dimensionless form: 
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   (6) 

 

Here,  is the similarity variable.   is stream function. )0( cc  is a parameter related to the 

surface stretching speed, n  is the power index related to the surface stretching velocity. 
 
Introducing these variables in the equations, (2), (3), (4) and (5) we get the following dimensionless 
forms of the equations: 
 

  0))/1((
1

2
)
1

1(
2
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0
1
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with parameters: 
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Here we consider following parameters with their symbols as follows:   
 
M is magnetic parameter(Hartmann number), K1 is Permeability parameter, Fs is Forchheimer 
parameter,  Pr is Prandtl number, GrT is thermal Grashof number, GrC is concentration Grashof 
number, Ec is Eckert number, Du  is Dufour number, Sc  is Schmidth number, Sr  is Soret number. 
 
And corresponding boundary conditions as follows: 
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  is called velocity slip parameter, 1  is called thermal slip parameter, and 2 is called concentration 

slip parameter. 
 
The physical quantities of Engineering interest are the Skin-friction coefficient (rate of shear stress), 
the couple stress coefficient of the sheet, the  local Nusselt number (rate of heat transfer), and the 
local Sherwood number (rate of mass transfer).  
 

The Skin-friction fC , local Nusselt Number xNu  and local Sherwood Number xSh   are defined as 

follows. 



 
 
 
 

Kala; AJOPACS, 1(2): 1-17, 2016; Article no.AJOPACS.31014 
 
 

 
7 
 

2

2
w

w
f

U
C




 ,





















TT

y

T
x

Nu
w

y 0
,





















CC

y

C
x

Sh
w

y 0
.                                                        (13) 

 
Using (6) and (13) we get 
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is a heat flux from the surface of the sheet and Re is the local Reynold Number. 
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Here 

0















y
y

C
is a mass flow rate at the surface of the sheet and Re is the local Reynold number. 

 
3. METHOD OF NUMERICAL SOLUTION 
 

The numerical solutions are obtained using the 
equations  (7)-(9)  and boundary conditions (11) 
for some values of the governing parameters, 

namely, the thermal Grashof  parameter ( TGr ), 

concentration Grashof parameter   ( CGr )and 

stretching  index(sheet) parameter( 1 ), velocity 

slip parameter ( ), thermal slip parameter( 1 ) , 

and concentration slip parameter( 2 ).  Effects of 

these parameters on the steady boundary layer 
flow are discussed in detail. The numerical 
computation is done using the MATLAB in-built 
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numerical solver bvp4c. In the computation we 

have taken 10   and axis according to the 

clear figure-visuality. 
 
For convenience in calculation in Matlab, for 
parameter- symbols used in modelling equations 
and boundary conditions following symbols are 
used: 
 

.1,2,1,,2,1

,),0(3),0(2),0(1

21 nnmmbGrdGrd

daafa

CT 






 

 

4. RESULT ANALYSIS AND DISCUSSION 
 

In order to analyze the behaviour of non-

dimensional linear velocity )(f  , temperature

)( , and concentration )( profiles of the 

physical problem, numerical calculations are 
carried out for various values of  thermal Grashof  

parameter ( TGrd 1 ), concentration Grashof 

parameter   ( CGrd 2 )and stretching  index 

parameter( 11 m ), velocity slip parameter        

( d ), thermal slip parameter( 11 m ) , and 

concentration slip parameter( 22 m ). Also, 

the Skin-friction factor, local Nusselt number and 
local Sherwood number are discussed. For 
illustration of the results, the numerical data is 
tabulated in Tables 1-8 and plotted in Figs. 2–19. 

 
The values of Skin-friction and local Nusselt 
number are compared with the previous 
published values, and are shown in Tables 1–2. 
It is observed that the obtained values are in 
good agreement with the published values. 

 
Tables 1 and 2 present the values of Skin-friction 
coefficient and reduced Nusselt number for 
different values of nonlinear stretching parameter 
n  and Prandtl number Pr, respectively. The 
present results are compared with the results of 
Cortell [18] and Ullah et al. [17]. It is observed 
from Table 1 that magnitude of Skin-friction 

coefficient  )0(
1

1 f
b









  increases with the 

increase in n  whereas reduced Nusselt number 
decreases with the increase in n  and increases 
with the increase in Pr (Table 2). 

 

Table 1. Comparison of )0(f  for different values of n1 with Fs=0.0, d1=0.0, d2=0.0, d=0.0, 

m1=104, m2=104, M=0, Pr=1.00, Du=0.0, Sc=0.22, a1=0.0, a2=1.0, a3=1.0, b=108, Ec=0.0, Da=107, 
Sr=0 

 

 

Table 2. Comparison of local Nusselt number )0( for various values of Pr and n1 with 

Fs=0.0, d1=0.0, d2=0.0, d=0.0, m1=10
4
, m2=10

4
, M=0, Pr=1.00, Du=0.0, Sc=0.22, a1=0.0, a2=1.0, 

a3=1.0, b=108, Ec=0.0, Da=107, Sr=0 

 

 
 

)0(f   

n1 Cortell [18] Ullah et al. [17] Present values 

0.0  0.627547 0.6276 0.627631963479766 

0.2  0.766758 0.7668 0.766906263551595 

0.5  0.889477 0.8896 0.889594172073448 

1  1.0 1.0 1.000062567556568 

3  1.148588 1.1486 1.148660394543063 

10  1.234875 1.2349 1.234952969673218 

100  1.276768 1.2768 1.276830449563257 

)0(' ,Pr=1, 

n1 Cortell [17] Ullah et al. [18] Present values 
0.2 0.610262  0.6102 0.610277445039946 
0.5 0.595277  0.5949 0.595283487517005 
1.5 0.574537  0.5747 0.574829838650739 
3.0 0.564472  0.5647 0.564775152915357 
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Fig. 2. Velocity profile )(f  with respect to 

similarity transformation   for some values 

of  Thermal Grashof number d1 
 

 
 

Fig. 3. Temperature profile )( with respect 

to similarity transformation   for some 

values of Thermal Grashof number d1 
 

 

Fig. 4. Concentration profile )( with 

respect to similarity transformation   for 

some values of Thermal Grashof number d1 

It is shown in Fig. 2 that with the variation in the 
value of thermal Grashof number d1, the velocity 
profiles shows presence of point of intersection 
at some value of similarity variable in its 
(similarity variable’s) range. Before the point of 
intersection velocity profiles increase and after 
the point of intersection velocity profiles decrease 
with the increase in d1 and thus causes 
thickening before the point of intersection and 
thinning after the point of intersection of the 
corresponding boundary layers. 
 
Fig. 3 shows the behaviour of temperature 
profiles for increasing values of thermal Grashof 
number d1. The increasing values of d1 
decrease the fluid temperature and leads to a 
decrease in thermal diffusion and results in 
thinning boundary layer.  
 
Fig. 4 shows the behaviour of concentration 
profiles for increasing values of thermal Grashof 
number d1. The increasing values of d1 
decrease the fluid concentration and leads to 
decrease in concentration diffusion and results in 
thinning boundary layer. 
 
Fig. 5 shows the behaviour of velocity profile for 
increasing values of concentration Grashof 
number d2. The increasing values of d2 increase 
the fluid velocity and results in thickening 
boundary layer.  
 

 
 

Fig. 5. Velocity profile )(f  with respect to 

similarity transformation   for some values 

of Concentration Grashof number d2 
 
Fig. 6 shows the behaviour of temperature 
profiles for increasing values of concentration 
Grashof number d2. The increasing values of d2 
decrease the fluid temperature and leads to 
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decrease in thermal diffusion and results in 
thinning boundary layer. 
 

 
 

Fig. 6. Temperature profile )( with respect 

to similarity transformation   for some 

values of Concentration Grashof number d2 

 
 

Fig. 7. Concentration profile )( with 

respect to similarity transformation   for 

some values of Concentration Grashof 
number d2 

 

Fig. 7 shows the behaviour of concentration 
profiles for increasing values of concentration 
Grashof number d2. The increasing values of d2 
decrease the fluid concentration and leads to a 
decrease in mass diffusion and results in thinning 
boundary layer. 
 

Fig. 8 shows the behaviour of velocity profile for 
increasing values of stretching index parameter 
n1. The increasing values of n1 increase the fluid 
velocity and leads to an increase in velocity and 
results in thickening boundary layer.  
 
Fig. 9 shows the behaviour of temperature 
profiles for increasing values of stretching index 

parameter n1. The increasing values of n1 
decrease the fluid temperature and leads to a 
decrease in thermal diffusion and results in 
thinning boundary layer.  

 

 
 

Fig. 8. Velocity profile )(f  with respect to 

similarity transformation   for some values 

of Stretching Index parameter n1 

 

 
 

Fig. 9. Temperature profile )( with respect 

to similarity transformation   for some 

values of stretching index parameter n1 
 
Fig. 10 shows the behaviour of concentration 
profiles for increasing values of stretching index 
parameter n1. The increasing values of n1 
decrease the fluid concentration and leads to 
decrease in mass diffusion and results in thinning 
boundary layer. 

 
It is shown in Fig. 11 that with the variation in the 
value of velocity slip parameter d, the velocity 
profiles show presence of point of intersection at 
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some value of similarity variable in its (similarity 
variable’s) range. Before the point of intersection 
velocity profiles increase and after the point of 
intersection velocity profiles decrease with the 
increase in d and thus causes thickening before 
the point of intersection and thinning after the 
point of intersection of the corresponding 
boundary layer. 
 

 
 

Fig. 10. Concentration profile )( with 

respect to similarity transformation   for 

some values of stretching index parameter n1 
  

 
 

Fig. 11. Velocity profile )(f  with respect to 

similarity transformation   for some values 

of velocity slip parameter d 
 
It is shown in Fig. 12 that with the variation in the 
value of velocity slip parameter, the temperature 
profiles show presence of point of inflexion at 
some value of similarity variable in its (similarity 
variable’s) range. Before the point of inflexion 
temperature profiles increase and after the point 
of inflexion temperature profiles decrease with 

the increase in velocity slip parameter and thus 
causes thickening before the point of inflexion 
and thinning after the point of inflexion of the 
corresponding boundary layer. 
 

 
 

Fig. 12. Temperature profile )( with 

respect to similarity transformation   for 

some values of velocity slip parameter d 
 
Fig. 13 shows the behaviour of concentration 
profiles for increasing values of velocity slip 
parameter d. The increasing values of d 
decrease the fluid concentration and leads to 
decrease in mass diffusion and results in thinning 
boundary layer. 
 

 
 

Fig. 13. Concentration profile )( with 

respect to similarity transformation   for 

some values of velocity slip parameter d 
 
It is shown in Fig. 14 that with the variation in the 
value of thermal slip parameter, the temperature 
profiles show presence of point of inflexion at 
some value of similarity variable in its (similarity 



 
 
 
 

Kala; AJOPACS, 1(2): 1-17, 2016; Article no.AJOPACS.31014 
 
 

 
12 

 

variable’s) range. Before the point of inflexion 
temperature profiles decrease and after the point 
of inflexion temperature profiles increase with the 
increase in thermal slip parameter and thus 
causes thinning before the point of inflexion and 
thickening after the point of inflexion of the 
corresponding boundary layer. 
 
Fig. 15 shows the behaviour of concentration 
profiles for increasing values of thermal slip 
parameter m1. The increasing values of m1 
decrease the fluid concentration and leads to a 
decrease in mass diffusion and results in thinning 
boundary layer.  
 

 
 

Fig. 14. Velocity profile )(f  with respect to 

similarity transformation   for some values 

of thermal slip parameter m1. 
 

 
 

Fig. 15. Temperature profile )( with 

respect to similarity transformation   for 

some values of thermal slip parameter m1 
 
Fig. 16 shows the behaviour of concentration 
profile for increasing values of thermal slip 

parameter m1. The increasing values of m1 
increase the fluid concentration and leads to 
increase in mass diffusion, and results in 
thickening boundary layer.  

 

 
 

Fig. 16. Concentration profile )( with 

respect to similarity transformation   for 

some values of thermal slip parameter m1 
 
It is shown in Fig. 17 that with the variation in the 
value of concentration slip parameter m2, the 
velocity profiles show presence of point of 
inflexion at some value of similarity variable in its 
(similarity variable’s) range. Before the point of 
inflexion velocity profiles attain maxima and after 
the point of inflexion velocity profiles decrease 
with the increase in concentration slip parameter 
m2 and thus causes thickening before the point 
of inflexion and thinning after the point of 
inflexion of the corresponding boundary layer. 

 

 
 

Fig. 17. Velocity profile )(f  with respect to 

similarity transformation   for some values 

of concentration slip parameter m2 
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Fig. 18 shows the behaviour of temperature 
profile for increasing values of concentration slip 
parameter m2. The increasing values of m2 
increase the fluid temperature and leads to a 
increase in thermal diffusion and results in 
thickening boundary layer. 
 
Fig. 19 shows the behaviour of concentration 
profiles for increasing values of concentration slip 
parameter m2. The increasing values of m2 
decrease the fluid concentration and leads to a 
decrease in concentration diffusion and results in 
thinning boundary layer. 
 

 
 

Fig. 18.Temperature profile )( with respect 

to   similarity transformation for some 

values of concentration slip parameter m2 
 
Table 3 shows with the increase in thermal 
Grashof number, Skin-friction decreases, local 
Nusselt number and local Sherwood number 
increase. 
 
Table 4 shows with the increase in concentration 
Grashof number Skin-friction decreases, local 

Nusselt number and local Sherwood number 
increase. 
 
Table 5 shows with the increase in stretching 
index parameter Skin-friction decreases, local 
Nusselt number and local Sherwood number 
increase. 
 
Table 6 shows with the increase in velocity slip 
parameter, Skin-friction, local Nusselt number 
and local Sherwood number decreases. 
 
Table 7 shows with the increase in thermal slip 
parameter, Skin-friction, local Nusselt number 
and local Sherwood number decrease. 
 

 
 

Fig. 19. Concentration profile )( with 

respect to similarity transformation   for 

some values of concentration slip parameter 
m2 

 
Table 8 shows with the increase in concentration 
slip parameter, Skin-friction, local Nusselt 
number and local Sherwood number decrease. 

 

Table 3. Comparison of local Skin-friction )0(f   , local Nusselt number )0( , and local 

Sherwood number )0(' for various values of Thermal Grashof parameter d1 

 

n1=2;M=1.0;Da=10;Fs=0.5;d1=0.50;d2=0.50;Pr=0.70;Ec=0.5;Du=0.1;Sc=0.2; 

Sr=0.7;b=10
8
;a1=1.0;d=0.2;m1=10

4
;a2=1.0;m2=10

4
;a3=1.0 

d1 )0(f   )0(  )0(  

0.5 -1.139171110747207 0.412286376828377 0.291199312367934 

1 -0.924674698901373 0.463136960151034 0.307607467201971 

2 -0.520262779220773 0.533736823794359 0.333044041642291 

3 -0.136273342804153 0.575792046556303 0.352221016180282 
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Table 4. Comparison of local Skin-friction )0(f   , local Nusselt number )0( , and local 

Sherwood number )0(' for various values of Concentration Grashof parameter d2 

 

n1=2;M=1.0;Da=10;Fs=0.5;d1=0.50;d2=0.50;Pr=0.70;Ec=0.5;Du=0.1;Sc=0.2; 

Sr=0.7;b=108;a1=1.0;d=0.2;m1=104;a2=1.0;m2=104;a3=1.0 

d2 )0(f   )0(  )0(  

0.5 -1.139171110747207 0.412286376828377 0.291199312367934 

1 -0.889855912405966 0.490721434531348 0.321141516623845 

2 -0.429058096774202 0.588161328040350 0.361560777019338 

3 -0.000005215126383 0.639622713232535 0.388558943654556 
 

Table 5. Comparison of local Skin-friction )0(f   , local Nusselt number )0( , and local 

Sherwood number )0(' for various values of Stretching Index parameter n1 

 

n1=2;M=1.0;Da=10;Fs=0.5;d1=0.50;d2=0.50;Pr=0.70;Ec=0.5;Du=0.1;Sc=0.2; 

Sr=0.7;b=108;a1=1.0;d=0.2;m1=104;a2=1.0;m2=104;a3=1.0 

n1 )0(f   )0(  )0(  

0.5 -1.107834524593921 0.400034622223237 0.285095245862456 

2 -1.139171110747207 0.412286376828377 0.291199312367934 

4 -1.151827273795374 0.417067365072081 0.293706192937322 

7 -1.158981410957736 0.419716940271576 0.295129581837988 
 

Table 6. Comparison of local Skin-friction )0(f   , local Nusselt number )0( , and local 

Sherwood number )0(' for various values of Velocity Slip  parameter d 

 

n1=2;M=1.0;Da=10;Fs=0.5;d1=0.50;d2=0.50;Pr=0.70;Ec=0.5;Du=0.1;Sc=0.2; 

Sr=0.7;b=108;a1=1.0;d=0.2;m1=104;a2=1.0;m2=104;a3=1.0 

d )0(f   )0(  )0(  

0.1 -0.937342673670912 0.438194038419332 0.290086238282107 

0.5 -1.783355656099067 0.288247163113478 0.287866635350244 

1 -2.977042314559305 -0.085854377106689 0.258461876416481 

1.5 -4.307781126641889 - 0.690959162359931 0.196506250870556 
 

Table 7. Comparison of local Skin-friction )0(f   , local Nusselt number )0( , and local 

Sherwood number )0(' for various values of Thermal Slip  parameter m1 

 

n1=2;M=1.0;Da=10;Fs=0.5;d1=0.50;d2=0.50;Pr=0.70;Ec=0.5;Du=0.1;Sc=0.2; 

Sr=0.7;b=10
8
;a1=1.0;d=0.2;m1=10

4
;a2=1.0;m2=10

4
;a3=1.0 

m1 )0(f   )0(  )0(  

0.1 0.610103383798474 7.153388196192017 1.120671503628536 

0.2 -0.213885449511540 3.699042263686635 0.682247981827339 

0.3 -0.508142098592084 2.560199251966306 0.547811963356730 

0.5 -0.752540753371500 1.677252362446840 0.443148025627339 
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Table 8. Comparison of local  Skin-friction )0(f   , local Nusselt number )0( , and local 

Sherwood number )0(' for various values of Concentration Slip  parameter m2 

 
n1=2;M=1.0;Da=10;Fs=0.5;d1=0.50;d2=0.50;Pr=0.70;Ec=0.5;Du=0.1;Sc=0.2; 

Sr=0.7;b=10
8
;a1=1.0;d=0.2;m1=10

4
;a2=1.0;m2=10

4
;a3=1.0 

m2 )0(f   )0(  )0(  

0.1 1.041439944747776 0.764447309403654 4.138061437710518 
0.2 0.030578419285525 0.699488592506508 2.042683211959266 
0.3 -0.333797749258752 0.641229843346451 1.408317575601098 
0.5 -0.640354448487176 0.573650792771382 0.932251856191939 

 
5. CONCLUSION 
 
In the present paper the numerical study of 
effects of thermal Grashof parameter and 
concentration Grashof parameter on steady MHD 
Casson fluid flow through non-Darcy porous 
media, over a nonlinear boundary surface under 
slip-conditions, is explored. The effects of 
thermal Grashof number, concentration Grashof  
number and stretching  index, velocity slip, 
thermal slip , and concentration slip parameters 
on velocity, heat transfer, and concentration 
profiles, Skin- frictions, local Nusselt number and 
local Sherwood number are computed and 
discussed numerically and presented through 
tables and graphs. 

 
From the above work following results are 
concluded. 

 
With the increase in each of magnetic parameter, 
Dufour parameter, Soret parameter, Casson 
parameter, Prandtl number, and Schmidth 
number, velocity profiles decrease and thus 
cause thinning of the corresponding boundary 
layers. 

 
With the increase in each of thermal Grashof 
number, concentration Grashof number, 
stretching index parameter, thermal slip 
parameter, temperature profiles decrease and 
thus cause thinning of the corresponding 
boundary layers. 
 
With the increase in thermal Grashof number, 
concentration Grashof number, stretching index 
parameter, velocity slip parameter, concentration 
slip parameter, concentration profiles decrease 
and thus cause thinning of the corresponding 
boundary layers. 
 
With the increase thermal slip parameter, before 
the point of inflexion velocity profile decreases 
and after the point of inflexion velocity profile 

increases and thus causes thinning before the 
point of inflexion and thickening after the point of 
inflexion of the corresponding boundary layer. 

 
With the increase in thermal Grashof number, 
and velocity slip parameter, before the point of 
intersection velocity profile increases and after 
the point of intersection velocity profile decreases 
and thus causes thickening before the point of 
intersection and thinning after the point of 
intersection of the corresponding boundary layer. 

 
Velocity profiles increase and thus cause 
thickening of the corresponding boundary layers 
with the increase in concentration Grashof 
number, and stretching index parameter. 

 
Temperature profiles increase and thus cause 
thickening of the corresponding boundary    
layers with the increase in concentration slip 
parameter. 
 
Concentration profiles increase and thus cause 
thickening of the corresponding boundary layers 
with the increase in thermal slip parameter. 

 
With the increase in the value of concentration 
slip parameter, velocity profiles show increase 
before the point of inflexion and decrease after 
the point of inflexion, and hence cause increase 
before the point of inflexion and decrease after 
the point of inflexion in the corresponding 
boundary layer thickness. 

 
With the increase in the value of velocity slip 
parameter, temperature profiles show increase 
before the point of inflexion and decrease after 
the point of inflexion, and hence cause increase 
before the point of inflexion and decrease after 
the point of inflexion in the corresponding 
boundary layer thickness. 
 
Skin -friction decreases, local Nusselt number 
and local Sherwood number increase with the 
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increase in thermal Grashof number, 
concentration Grashof number, and stretching 
index parameter. 

 
Skin-friction,  local Nusselt number and local 
Sherwood number decrease with the increase in 
velocity slip parameter, thermal slip parameter, 
concentration slip parameter. 
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