
*Corresponding author: E-mail: inayat@uok.edu.pk;

Current Journal of Applied Science and Technology

35(1): 1-14, 2019; Article no.CJAST.48708
ISSN: 2457-1024
(Past name: British Journal of Applied Science & Technology, Past ISSN: 2231-0843,
NLM ID: 101664541)

 Feasibility Achievement without the Hassle of
Artificial Variables: A Computational Study

Syed Inayatullah1*, Nasir Touheed2, Muhammad Imtiaz1,

Tanveer Ahmed Siddiqi1, Saba Naz1 and Hafsa Athar Jafree1

1Department of Mathematics, University of Karachi, Karachi 75270, Pakistan.
2
Department of Mathematical Sciences, Institute of Business Administration, Karachi 75270, Pakistan.

Authors’ contributions

This work was carried out in collaboration between all authors. Authors SI, NT and MI designed the
study, author HAJ performed the statistical analysis, HAJ and TA wrote the protocol, and wrote the
first draft of the manuscript. Author TA and SN managed the analyses of the study. Authors SI and

HAJ managed the literature searches. All authors read and approved the final manuscript.

Article Information

DOI: 10.9734/CJAST/2019/v35i130163
Editor(s):

(1) Dr. Orlando Manuel da Costa Gomes, Professor of Economics, Lisbon Accounting and Business School (ISCAL), Lisbon
Polytechnic Institute, Portugal.

Reviewers:
(1) Borislav Kolaric, University Union - Nikola Tesla, Serbia.

(2) Tajini Reda, ENSMR, Morocco.
Complete Peer review History: http://www.sdiarticle3.com/review-history/48708

Received 31 January 2019
Accepted 20 April 2019
Published 26 April 2019

ABSTRACT

The purpose of this article is to encourage students and teachers to use a simple technique for
finding feasible solution of an LP. This technique is very simple but unfortunately not much practiced
in the textbook literature yet. This article discusses an overview, advantages, computational
experience of the method. This method provides some pronounced benefits over Dantzig’s simplex
method phase 1. For instance, it does not require any kind of artificial variables or artificial
constraints; it could directly start with any infeasible basis of an LP. Throughout the procedure it
works in original variables space hence revealing the true underlying geometry of the problem. Last
but not the least; it is a handy tool for students to quickly solve a linear programming problem
without indulging with artificial variables. It is also beneficial for the teachers who want to teach
feasibility achievement as a separate topic before teaching optimality achievement. Our primary
result shows that this method is much better than simplex phase 1 for practical Net-lib problems as
well as for general random LPs.

Method Article

Inayatullah et al.; CJAST, 35(1): 1-14, 2019; Article no.CJAST.48708

2

Keywords: Linear Programming, Simplex Method, Artificial Variables, Dictionary, Phase 1.

1. INTRODUCTION

Linear programs frequently show up in various
areas of applied sciences today. The prime
reason for this is their tractability: Linear
programs frame problems in optimization as a
system of linear inequalities. This template
is general enough to express many
different problems in engineering, operations
research, economics, and even more
abstract mathematical areas such as
combinatorics.

The linear programming problem is usually
solved by incorporating one of the two
algorithms: either with simplex algorithm or
interior point algorithm. Both of the methods are
extensively used these days and continue to
contest with each other. They have their own
advantages and disadvantages in different
contexts. For example interior point method has
a big advantage that it has a polynomial time
complexity to solve a general LP problem. But
the Dantzig’s simplex method still seems to be
the most efficient algorithm for great majority of
practical problems because most of the practical
problems are not “very large” when interior point
becomes more efficient. Simplex method also
exhibits efficiency when a problem needs to be
re-solved with certain modifications. The
complexity of IPM for a single iteration is O(n

3
)

while that of simplex method is O(n2). So
when handling large-scale problems even
thousands of pivots of simplex method
require considerably less effort as compared to a
single IPM iteration. Also this factor
provides simplex method an edge to perform
sensitivity analysis more efficiently. Additionally
simplex method so far is superior to IPM for
solving (mixed) integer linear optimization
problems. One reason contributing to this factor
is that generating a cut requires a basic solution.

Considering vast applicability of LPs in various
fields, learning LPs has become an important
part of undergraduate and graduate courses.
Because of this many researchers are now
focused on designing algorithms which are more
efficient and easily implementable for classroom
teaching.

2. LITERATURE REVIEW

Essentially the simplex method by Dantzig was
developed to solve only the LPs having a known

feasible solution, commonly referred as the
initial basic feasible solution. For the LPs
having no initial basic feasible solution,
almost all of the practical variants of simplex
method suggest to apply the simplex method in
two phases [1,2], called phase 1 and phase 2. In
phase 1, a basic feasible solution is created by
adding some (non-negative) artificial variables to
the problem with an additional objective, equal to
minimization of the sum of all the artificial
variables, called SP1 objective. The purpose of
phase 1 process is to maintain the feasibility
and minimize the sum of artificial variables as
much as possible. If phase 1 terminates with an
objective value equal to zero, it implies that all
artificial variables have reached value zero and
the current basis has become feasible to the
original problem, then return to the original
objective and proceed with simplex phase 2.
Otherwise, conclude that the problem has no
solution.

For a bit larger LPs, generally implementation of
two phase simplex method significantly
increases the number of variables, number of
iterations and thus the complexity as well.
From the point of view of class room teaching it
often becomes a tedious job. The above
mentioned factors led to the need of
developing more general algorithms for
solving a given linear program in which one may
directly start from an initial infeasible basic
solution.

Papparrizos [3] presented an artificial
variable free method but his method uses
additional artificial constraint with a big-M
number. His method also requires a tedious
evaluation of series of additional objective
functions besides the original objective
function. Moreover at each iteration this
algorithm must check both primal and dual
feasibility.

Arsham [4,5] proposed an algorithm for general
LP models in which he claimed that his algorithm
will either provide a feasible solution or will
declare infeasibility after a finite number of
iterations. Enge and Huhn [6] and Inayatullah,
Touheed and Imtiaz [7] presented counter
examples in which Arsham’s algorithm is
declaring a feasible problem inconsistent.

Later on [8,9,10] presented an artificial-free
algorithm named push and pull algorithm which

Inayatullah et al.; CJAST, 35(1): 1-14, 2019; Article no.CJAST.48708

3

initiates with an incomplete basic variable set
(BVS). As the algorithm proceeds the variables
are brought in to the basis. The Push phase
continues until the basic variable set is complete.
This phase may terminate yielding an infeasible
BVS. The problem then advances by starting the
Pull Phase, which pulls the solution back to
feasibility by incorporating pivot rules similar to
the dual simplex method. Arsham claims that the
push and pull algorithm is artificial-free,
however, his claim would be correct if we are
only concerned with artificial variables, in
fact his method requires adding artificial
constraints so his method is not truly an artificial
free method.

Serang [11] claimed that simplex method is so
far still practically the best known pivot
algorithm for solving LPs. But from teaching point
of view the hurdle is that simplex method for
feasibility (simplex phase 1) cannot be illustrated,
prior to simplex method for optimality
(simplex phase 2). So, usually students
learn phase 2 before phase 1, which of course
sounds unpleasant for both teachers and
students.

The main method (also discussed in [12]), is an
easy to use alternative of simplex phase 1
process which obviates the role of artificial
variables by allowing negative variables into the
basis. This method is artificial variable/constraint
free so consequently avoid stalling and save
degenerate pivots in many cases of linear
programming problems. In this article we would
call this method as Dynamic Phase 1(DP1).

Most recently Inayatullah, Touheed and Imtiaz [7]
constructed another artificial variable free version
(may be considered as clone) of simplex phase
1, called Art-free Simplex Method (ASM). The
method is also artificial variable free as well as
artificial constraint free version of simplex phase
1. The authors showed that this method is
computationally more efficient than simplex
phase 1 because it saves unnecessary
computations. The key difference between ASM
and DP1 is that ASM follows the same
sequences of pivots as simplex phase 1 does,
even in the case of highly degenerate LPs
whereas DP1 is not.

Computationally DP1 is similar to ASM in the
sense that it also saves unnecessary
computations, while iterations-wise this DP1 may
produce different sequence of pivots from the
pivoting sequence of simplex method. The

difference would arise only in the problems
where degeneracy due to artificial variables
occurs. Simplex method (hence also its artificial
variable free clone ASM) has a technical flaw
that it takes into account degenerate artificial
variables in making the phase 1 objective, which
is undoubtedly peripheral , because degenerate
artificial variables do not actually reflect the
infeasibility status of the problem. DP1
overcomes the flaw using the refresh
computation of the phase 1 objective in each
iteration. DP1, in contrasting phase I
simplex method, does not require any abrupt
changes in the LP structure to start with.
Indeed it could start to avail feasibility at any
time without making any adjustments in the
simplex table. Unlike [8,9,10,3], it neither
requires any artificial variable nor any artificial
constraint.

In this article we have denoted simplex
phase 1 and simplex phase 2 by SP1 and
SP2 respectively, and dynamic phase 1 by
DP1.

3. ADVANTAGES OF DP1

Several features of DP1 are alike ASM. For
instance, it could start with any feasible or
infeasible basis of an LP. In fact it could also be
very useful for solving integer programming
problems. This method solves general LP
problem without any need of artificial variables
which also makes it space efficient. Usually the
learning sequence for simplex method is first
SP2 and then SP1, because SP1 requires a
prerequisite knowledge of SP2. DP1 would be a
fruitful tool for the teachers who want to
teach feasibility achievement as a separate
topic before teaching optimality achievement,
because working rule of this method can
easily be demonstrated to the students having
either a little or even no prior knowledge of
simplex method for optimality (SP2). So after
the development of DP1, the learning
sequence would be to firstly learn DP1 and then
SP2 i.e. it eradicates the need to illustrate SP2
before SP1.

Distinguishing features of DP1 over
ASM are, during ASM one may have to store the
feasibility status of each variable by ‘+’ and ‘–’
flags. So, ASM is vulnerable to face
infeasibility flagged degenerate variables. This
issue effects ASM in the same way as
degeneracy effects simplex method.
Despite DP1 is immune to such kind of

Inayatullah et al.; CJAST, 35(1): 1-14, 2019; Article no.CJAST.48708

4

pseudo infeasibilities, because it does not need
any flags to show the feasibility status of a
variable.

3.1 Description of the Procedure DP1
through an Example

Consider the following linear system,

0,,,,,,,,

122343

606542

244843

205

4423311

987654321

94321

84321

74321

64321

54321













xxxxxxxxx

xxxxx

xxxxx

xxxxx

xxxxx

xxxxx

For the initial basis B, setting B = {5,6,7,8,9}, is
the easiest choice. So corresponding N =
{1,2,3,4}. Here it could be observed that negative
right-hand side values could be used as a
tentative infeasibility measure of each constraint
for current basis. For example 1st, 2nd and 3rd
constraints are infeasible by 44, 20 and 24 units
of slack values. In all, current basis is infeasible
by 88 units. Let us construct an objective function
of minimizing overall infeasibility (negative sum
of basic infeasible variables) of the problem. That

is 765)(xxxBcisMinimize  .

Where cis(B) stands for cumulative infeasibility
status and its value could be obtained for a basis

B, by setting all non-basic variables Nx equal to

zero. In general 



Biix
ixBcis

,0

)(.

On replacing the basic variables in terms of non-
basic variables, cis(B) becomes

88679)(321  xxxBcisMinimize .

The cis(B) function is an alternative to traditional
phase 1 objective function of minimizing artificial
variables. In this function the constant value 88 is
unimportant, so to compute the coefficients only,
one would have to just vertically sum-up the
coefficients of non-basic variables in the
constraints with negative right hand side. The
coefficient vector of cis function is denoted by w,

in this case]6,7,9[w .

3.1.1 Selection of entering variable

Like SP1, this method (DP1) also follows a
gradient ascent approach that iteratively

decreases the value of cis, while maintaining
feasibility of basic variables. From the expression
of objective function it is clear that any increase

in values of the non-basic variables 21, xx and

3x would decrease value of cis. So, 21, xx

and 3x are all candidate entering

variables.

The rules of selecting an entering basic variable
among all candidate entering variables are
usually known as Pricing Rules. So far many
pricing rules have been developed for
entering variables, some of which are, Dantzig’s
most negative coefficient rule [1] steepest
edge rule [13], Devex rule [14], Minimum angle
method [15], Largest-distance rule [16], Nested
Pricing rule [17] Nested largest-distance rule
[18].

In this paper we would use Dantzig’s most
negative coefficient criteria for selection of
entering variable. According to this criteria,
preferred entering variable is the variable along
which cis has highest decreasing rate. So in the
above example, x1 would be our preferred
entering basic variable.

3.1.2 Selection of leaving variable

Dantzig’s ratio test (DRT) suggests selecting that
basic variable as leaving which imposes the most
stringent upper bound on the increase of the
entering variable.

An easier way to identify leaving variable is to
examine the ratios of right hand side of the
constraints to the corresponding coefficients of
the entering variable, x1, as shown in the
following Table 1.

3.1.3 Pivot operation

In this step we perform elementary row
operations to obtain a new equivalent LPP with
new basis.

3.2.4 Refreshing the objective function

After each change of basis (pivot operation), if
infeasibility is not completely removed, re-
compute the cis(B) function.

Inayatullah et al.; CJAST, 35(1): 1-14, 2019; Article no.CJAST.48708

5

Table 1. Differential constraint coefficients of non-negative ratio for selective variables

Basic Constraint

coefficients of
entering variable x1

Right hand
side value

Non-negative ratio
(or intercept)

Selected
ratio

Preferred
leaving variable

x5 -11 -44  11
44

1x 4 4 (min) x5

x6 -1 -20 201
20

1 x

x7 +3 -24 (ignored)
x8 2 60  2

60
1x 30

x9 3 66  3
66

1x 22

Note: In the column of ratios we only consider variable with non-negative ratios because leaving variable only
with non-negative ratios, restricts the entering variable. Preferred leaving variable is the variable corresponding to

minimum of these ratios.

4. THE DYNAMIC PHASE 1 METHOD: [12]

To formally develop the algorithm we’ll use the
following dictionary notation originally introduced
by Chvatal [19] but used in a slightly different
form by Khan et al. [20].

The dictionary of any LP for a basis B, may be
element-wise represented in the following
collection of equations, denoted by D(B), which is
slightly modified form of Chvatal [21] Kaluzny
[22].






























zxzMaximize

Bixx

BD

Nj
jj

i
Nj

jiji

ˆ

,

)(




 (1)

Where i is the component of vector

B
BA  1b representing value of the basic

variable ix , ij is the element of
NB

NB AA   1

denoting the coefficient of the non-basic variable

jx in the equation containing basic variable ix ,

j is the component of
NT

NB
T
B

T
N AA  )(1cc

representing the coefficient of non-basic variable

jx in the objective function of the current

dictionary, and   bc 1ˆ B
T
B Az is the objective

scalar value associated with current basis B. A
basis B(or a dictionary D(B)) is said to be

feasible if 0i for all Bi .

As discussed in the last section, We can formally describe cis(B) as follows,





0:

)(
ii

ixBcis
 (2)

Or equivalently in the form of non-basic variables,

 
 
















0:

)(
ii Nj

jiji xBcis




 (3)

On simplification we get,

 
 

















0:0:

)(
ii

i
Nj ii

jij xBcis


   



0: ii

i
Nj

jj xw




 (4)

where 



0: ii

ijjw


 , Nj  . We would call swj ' as components of cumulative infeasibility vector

(civ) w(B).

Inayatullah et al.; CJAST, 35(1): 1-14, 2019; Article no.CJAST.48708

6

Lemma 4.1:

For a basis B, if all 0)(Bwj then the associated problem is primal inconsistent.

Proof:

Associated cis function for would be,

  



0:0:

)(
ii

i
Nj

jj

ii
i xwxBcis





 Implies that   



0:0: ii

i

ii
i

Nj
jj xxw





Which is a clearly impossible for any feasible (non-negative) solution x because

  0
0:

 
 ii

i
Nj

jj xxw


and 0
0:


ii

i


 . ■

Problem 1

Given a dictionary D(B), obtain a primal feasible basis if exists.

Algorithm: Dynamic Phase 1 (DP1)

Step 1: Let S be a maximal subset of B such that },0β|{ BssS s  . If S then basis B is

primal feasible. Exit.

Step 2: Construct a row-vector w
N such that 




Ss

sjjw  .

Step 3: Let NK  such that },0:{ NjwjK j  . If K , according to Lemma 3.1 basis

B is primal inconsistent. Exit.

Step 4: Choose Kk such that hk ww  Kh

 (Ties could be broken on minimum index)

Step 5: Choose Br  such that

     BiBir ikiik

i
ikiik

i  ,0,0:,0,0:minarg 









 (Ties could be broken on minimum index)

Step 6: Make a pivot on),(kr ( Set }{\}){(: rkBB  , }{\}){(: krNN  and update

D(B)).

Step 7: Go to Step 1.

Theorem 4.2: The dynamic phase 1 is guaranteed to stop in a finite number of iterations if there is no
degeneracy.

Proof: There are only a finite number bases, clearly not more than 








m

n
, and every non-degenerate

pivot performed according to step 4 and step 5 strictly increase the value of the cis(B) function. This
implies that a basis cannot be encountered twice. ■

Inayatullah et al.; CJAST, 35(1): 1-14, 2019; Article no.CJAST.48708

7

Example 1

Obtain a feasible basis of the following system of equations using DP1.

510797

303460

22

505100

1020

8321

7321

6321

5321

4321











xxxx

xxxx

xxxx

xxxx

xxxx

0,0,0,0,0,000 87654321  xxxxxxxx ,,

By taking initially }3,2,1{},8,7,6,5,4{  NB , we can construct the associated dictionary D(B) [20]

(because objective function z is not given, we omitted z-row here) of the above problem as

































107975

346030

2112

5110050

112010

8

7

6

5

4

321

Here  0,0,0 875  8,7,5S . Clearly, current basis is infeasible.

So, row vector
NB )(w would be

 1874153

321

w

The small number written above each component of w-vector is its index number. According to
Dantzig’s pricing rule described in step 4, we get k = 1 so entering basic variable is x1 and according
to the ratio test rule as described in step 5, we get r = 4 so the leaving basic variable is ‘x4’. Perform

the pivot operation on  1,4

































20/20720/157320/72/17

0130

20/3920/1920/12/5

0450

20/120/120/12/1

8

7

6

5

1

324b

Iteration 2: Now, }3,2,4{},8,7,6,5,1{  NB . As  08
 8S . Re-compute

Nw for new

dictionary.

 20/20720/157320/7w

324



Here 7 and 2  rk , perform pivot on  2 ,7 ,





























20/20720/15735/11782/17

0130

20/3920/195/142/5

04170

20/120/15/12/1

8

2

6

5

1

374b

Inayatullah et al.; CJAST, 35(1): 1-14, 2019; Article no.CJAST.48708

8

Iteration 3:

Here  08
 8S . Re-compute w -vector for this new dictionary.

 20/20720/15735/1178

374

w

8 and 3  rk , perform pivot on  3 ,8





























207/20207/1573207/4712207/170

0130

69/1369/108869/325669/283

04170

207/1207/89207/277207/95

3

2

6

5

1

874b

Since  S The current basis }3,2,6,5,1{B is primal feasible.

Remark 4.3:

If the above problem would have solved by SP1
or ASM it requires 6 iterations and as shown
above if it were solved by DP1 it just needs 3
iterations.

Remark 4.4:

There are some similarities and dissimilarities
between SP1 and DP1.
Dissimilarities: SP1 starts with a pseudo
(artificial) primal feasible basis and DP1 could
start directly from any primal infeasible basis. In
the start of every iteration, DP1 freshly computes
its objective function cis for current basis but on
the other hand SP1 keeps tracking its original
objective function (SP1 objective function).

Similarities: Both the methods analogously
preserve the existing feasibility of basic variables
and initiate with an equivalent objective of
minimizing cumulative infeasibilities in the basic
variables.

Remark 4.5:

DP1 has some advantages over SP1.

 In SP1 underlying geometry of original
problem is hidden under superimposed
framework of artificial variables but in
DP1 it is not.

 SP1 may face a situation in which
feasibility is achieved but the method

didn’t show it up, because of
degenerate artificial variables. Despite
DP1 doesn’t need any artificial variables,
so it is invulnerable of such
circumstances.

 DP1 gives full freedom to user in the
construction of initial basis, for example in
an equality constraint, a variable of any
sign (positive or negative) having
coefficient 1 and zero in other constraints
could be taken as basic variable. Unlike
SP1 which obliges to take artificial
variables into the initial basis. It means that
DP1 gives opportunity to put any original
variable from the constraint into the basis
without needing to introduce any extra
variables (i.e. artificial variables).

Example 2

Consider the following system of inequalities,

51027

25750

1020

321

321

321







xxx

xxx

xxx

0,00 321  xxx ,

By adding non-negative slack variables x4, x5 and

x6 and taking }3,2,1{},6,5,4{  NB , we can

construct the associated dictionary D(B) (here
because objective function z is not given, we
omitted z-row) of the above problem as

Inayatullah et al.; CJAST, 35(1): 1-14, 2019; Article no.CJAST.48708

9

Initial dictionary:

























10275

175025

112010

6

5

4

321b

Here

 11943
321

w

Pivot on (4,1)























20/20720/4720/72/17

2/32/92/50

20/120/120/12/1

6

5

1

324b

 20/20720/4720/7Here

324

w

Pivot on (5,3)























10/695/16710/1692/17

3/233/50

30/15/130/12/1

6

3

1

524b

 10/695/16710/169Here

524

w

According to step 3, the last w-vector shows that the problem is primal inconsistent.

5. APPLICATIONS

Since DP1 is an efficient alternative to the
SP1 as well as to ASM. So it can effectively
be incorporated in the solution process of
linear programming problems, integer
programming problems, sensitivity analysis,
parametric programming etc. It can become
an essential tool which can directly be
employed by researchers in solving various
problems of diverse fields like biological
sciences and engineering for example:
biological sciences [23,24], medical sciences
[25,26], biochemical sciences [27], mechanical
engineering [28] etc.

6. COMPUTATIONAL RESULTS

In this section Table 2 and Table 3 present a
comparison of the computational results of DP1
algorithm with the SP1. Using random models
suggested by Kaluzny [22] we generated 250
consistent linear programs and 250 inconsistent
linear programs with the associated dictionary

coefficients
ij  , and ij chosen randomly from

the integer interval [−50,50]. The results of both
consistent and inconsistent problems exhibit that
on average DP1 is better than SP1. For example
to determine consistency of LPs of orders
50×50, on average DP1 saved 3.16% and to
determine inconsistency of LPs of orders 50×70,
on average DP1 saved 5.43% iterations.

For further testing on practical problems, we
executed both the algorithms on Net-Lib test
problems [29] which reveal that on most Net-lib
problems (e.g. SCTAP2, SCSD8, SCSD6,
SCAGR25, SCTAP3 etc.) DP1 is more efficient
because number of iterations taken by DP1
much lesser than SP1. The results have been
summarized in Table 4.

The above comparisons in between DP1 and
SP1 strengthen that DP1 is more practically
efficient then SP1 in terms of number of
iterations.

Now we would turn our focus on comparison of
DP1 and SP1 in terms of basic arithmetic
operations (e.g. additions and multiplications).

Inayatullah et al.; CJAST, 35(1): 1-14, 2019; Article no.CJAST.48708

10

Fig. 1 and Fig. 2 depict the comparison of DP1
and SP1 based on the average number of
multiplication and addition operations needed to

solve LP problems of differentsizes which have
been sorted according to increasing sizes of the
coefficient matrix.

Table 2. Comparison in terms of average iterations on random consistent LPs

Order SP1 DP1 % of saved iterations
3x3 1.432 1.432 0.00%
3x5 1.76 1.76 0.00%
3x7 1.796 1.796 0.00%
5x5 2.913 2.821248 3.14%
5x10 3.191 3.1120472 2.46%
7x5 4.177 4.1109268 1.59%
7x10 5.082 5.0063368 1.50%
10x5 6.117 6.052 1.06%
10x10 8.128 8.0029756 1.54%
10x20 7.623 7.44496 2.33%
10x25 7.628 7.4749696 2.00%
15x15 14.407 14.10663 2.08%
15x20 14.359 14.070997 2.00%
20x20 22.167 21.720171 2.02%
20x30 20.164 20.004 0.79%
30x30 41.361 40.325434 2.50%
40x40 66.660 65.727074 1.40%
50x50 102.079 98.849477 3.16%
50x70 87.842 85.170342 3.04%
50x100 60.9154 60.492 0.70%
70x50 172.832 170.84423 1.15%
70x70 187.799 185.66 1.14%
70x100 152.531 147.90194 3.03%
80x80 231.531 227.60356 1.70%
90x90 287.652 286.29242 0.47%
100x100 347.511 341.27314 1.79%

Fig. 1. Comparison of DP1 and SP1 in terms of multiplication operations

Inayatullah et al.; CJAST, 35(1): 1-14, 2019; Article no.CJAST.48708

11

Table 3. Comparison in terms of average iterations on random inconsistent LPs

Order SP1 DP1 % of saved iterations
3x3 0.96 0.96 0.00%
3x5 1.332 1.332 0.00%
3x7 1.381 1.38 0.00%
5x5 2.533 2.3588768 6.88%
5x10 3.571 3.4343948 3.84%
7x5 3.293 3.044394 7.54%
7x10 5.001 4.8670508 2.67%
10x5 4.236 3.94 6.99%
10x10 7.328 7.0200144 4.21%
10x20 10.076 8.88987 11.77%
10x25 11.465 10.943229 4.55%
15x15 12.884 12.012213 6.76%
15x20 15.643 15.282512 2.30%
20x20 20.385 20.057307 1.61%
20x30 27.136 26.868 0.99%
30x30 41.398 40.376639 2.47%
40x40 66.911 65.922074 1.48%
50x50 94.007 91.020514 3.18%
50x70 125.203 118.40621 5.43%
50x100 136.697 131.508 3.80%
70x50 108.923 107.294 1.50%
70x70 174.128 172.136 1.14%
70x100 230.393 220.19861 4.42%
80x80 219.281 214.98955 1.96%
90x90 279.052 276.24393 1.01%
100x100 317.426 310.88034 2.06%

Fig. 2. Comparison of DP1 and SP1 in terms of addition operations

Inayatullah et al.; CJAST, 35(1): 1-14, 2019; Article no.CJAST.48708

12

Table 4. Comparison in terms of number of iterations taken on Net-Lib test problems

S. No. Problem Title Size SP1 DP1 % of saved iterations
1 ADLITTLE 56x97 22 23 −4.55%
2 AFIRO 27x32 6 6 0.00%
3 AGG2 516x302 47 47 0.00%
4 AGG3 516x302 37 37 0.00%
5 BANDM 305 x 472 9277 9911 −6.83%
6 BEACONFD 173x262 89 89 0.00%
7 BNL1 643x1175 8486 6914 18.52%
8 E226 223x282 128 133 −3.91%
9 FFFFF800 524x854 2001 1303 34.88%
10 ISRAEL 174x142 8 8 0.00%
11 SCAGR25 471x500 2051 1264 38.37%
12 SCAGR7 129x140 249 260 −4.42%
13 SCFXM2 660x914 1378 1265 8.20%
14 SCFXM3 990x1371 2408 1851 23.13%
15 SCORPION 388x358 398 369 7.29%
16 SCSD1 77x760 121 121 0.00%
17 SCSD6 147x1350 297 173 41.75%
18 SCSD8 397x2750 2784 1628 41.52%
19 SCTAP2 1090x1880 1910 929 51.36%
20 SCTAP3 1480x2480 1923 1234 35.83%
21 SHARE2B 96x79 120 119 0.83%
22 STOCFOR1 117x111 56 56 0.00%
 12.82%

Fig. 3. Graphs showing percentage of computations saved by DP1 over SP1

Inayatullah et al.; CJAST, 35(1): 1-14, 2019; Article no.CJAST.48708

13

The tables illustrate that (either we consider
multiplications or additions) DP1 always need
less number of operation computations as
compared to SP1. This difference becomes quite
remarkable especially for the problems that have
greater number of constraints as compared to
the number of variables. So, it is empirically
observed that like its recent predecessor ASM [7]
DP1 is much advantageous when “number of
constraints minus number of variables” is a large
number. This observation could be verified by the
graph as depicted in Fig. 3, as the value of

nm increases the percentage of saved
computations in DP1 also increases. For
example for a 13590 order problem the average
saving in computations is just about 10% but in

contrast to a 1590 order problem it reaches a
significant level of 80%. This fact can also be

seen in the problems of order 9030 , 3090 ,

9050 and 5090 . For the problems having
nm  , the savings in number of computations is

not much high. Basic theory of duality asserts
that in contrast to DP1, the dual version of DP1
would be more efficient computationally when

mn  is large.

7. CONCLUSION

In this article efficient variants of simplex method
for feasibility (named DP1) have been discussed.
This method does not need any kind of artificial
variables or artificial constraints; it could directly
start with any infeasible basis of an LP, providing
full freedom to the user that whether to start with
primal DP1 or dual DP1 without making any
abrupt changes to the LP structure. Primary
computational results showed that the method
requires much lesser number of iterations as of
SP1 on Netlib test problems. Computational
results for basic arithmetic operations showed
that DP1 is more efficient when nm is large.
Hence the method also provides great benefits in
class room teaching by eliminating the relatively
difficult and tedious calculations of artificial
variables and constraints. It is also a teaching aid
for the teachers who want to teach feasibility
achievement as a separate topic before teaching
optimality achievement. It is very helpful tool in
integer programming and sensitivity analysis,
because it provides an option to avoid dual
simplex method.

COMPETING INTERESTS

Authors have declared that no competing
interests exist.

REFERENCES

1. Dantzig G, Orden A, Wolfe P. The

generalized simplex method for minimizing
a linear form under linear inequality
restraints. Pacific J. Math. 1955;5(2):183-
195.

2. Wagner HM. A two-phase method for the
simplex tableau. Operation Research.
1956;4(4):443-447.

3. Papparrizos K. The two-phase simplex
without artificial variables. Methods of
Operations Research. 1990;73-83.

4. Arsham H. An artificial-free simplex
algorithm for general LP models.
Mathematical and Computer Modelling.
1997;25(1):107-123.

5. Arsham H. Initialization of the simplex
algorithm: An artificial-free approach. SIAM
Rev. 1997;736-744.

6. Enge A, Huhn P. A counterexample to H.
Arsham's "initialization of the simplex
algorithm: An artificial-free approach".
Society for Industrial and Applied
Mathematics; 1998.

7. Inayatullah S, Touheed N, Imtiaz M. A
streamlined artificial variable free version
of simplex method. Plos One. 2015;10(3).

8. Arsham H, Baloh P, Damij T, Grad J. An
algorithm for simplex tableau reduction
with numerical comparison. International
Journal of Pure and Applied Mathematics.
2003;4:53-80.

9. Arsham H, Damij T, Grad J. An algorithm
for simplex tableau reduction: The push-to-
pull solution strategy. Applid Mathematics
and computation. 2003;525-547.

10. Arsham H. A tabular, simplex type
algorithm as a teaching aid for general LP
models. Mathematical and Computer
Modelling. 1989;12:1051-1056.

11. Serang O. Conic sampling: An efficient
method for solving linear and quadratic
programming by randomly linking
constraints within the interior. Plos One;
2012.

12. Pan PQ. Linear programming computation.
Springer Heidelberg New York Dordrecht
London; 2014.

13. Goldfarb D, Reid J. A practicable steepest
edge simplex algorithm. Mathematical
Programming. 1977;361-371.

14. Harris P. Pivot selection methods of the
Devex LP code. Mathematical
Programming. 1973;1-28.

15. Inayatullah S, Khan N, Imtiaz M, Khan FH.
New minimum angle algorithms for

Inayatullah et al.; CJAST, 35(1): 1-14, 2019; Article no.CJAST.48708

14

feasibility and optimality. Canadian Journal
on Computing in Mathematics, Natural
Sciences, Engineering & Medicines.
2010;22-36.

16. Pan PQ. A largest-distance rule for the
simplex algorithm. European Journal of
Operational Research. 2008;187(2):393-
402.

17. Pan PQ. Efficient nested pricing in the
simplex algorithm. Operations Research
Letters. 2008;36(3):309-313.

18. Pan PQ. A fast simplex algorithm for linear
programming. Journal of Computational
Mathematics. 2010;28(6):837-847.

19. Chvatal V. Linear Programming. United
States of America: W.H. Freeman and
Company; 1983.

20. Khan N, Inayatullah S, Imtiaz M, Khan FH.
New artificial-free phase 1 simplex method.
International Journal of Basic and Applied
Sciences. 2009;9:97-114.

21. Chvatal V. Linear Programming. United
States of America: W.H. Freeman and
Company; 1983.

22. Kaluzny B. Finite pivot algoirthms and
feasibility. MS thesis, Faculty of Graduate
Studies and Reseach, School of Computer
Science, McGill University, Montreal,
Quebec, Canada; 2001.

23. Bruijn WD, Ketelaars D, Gelsema E,
Sorber L. Comparison of the simplex
method with several other methods for
background-fitting for electron energy-loss
spectral quantification of biological
materials. Microsc. Microanal. Microstruct.
1991;2:281-291.

24. Haefner JW. Biological systems principles
and applications. United States of America:
Springer; 2005.

25. Darvas F. Application of the sequential
simplex method in designing drug analogs.
Journal of Medicinal Chemistry.
1974;17(8):799-804.

26. Pulgarín JA, Molina AA, Alañón MT. The
use of modified simplex method to
optimize the room temperature
phosphorescence variables in the
determination of an antihypertensive drug.
Talanta. 2002;57:795-805.

27. Sun Y, Fleming RM, Thiele I, Saunders
MA. Robust flux balance analysis of
multiscale biochemical reaction networks.
BMC Bioinformatics; 2013.

28. Jatau JS, Datau SG, Agyo D. Application
of simplex method to determine the
minimum deviation in parameters affecting
dimensional accuracy during rolling from
their set values. Bulletin of Science
Association of Nigerian. 1999;22:113-120.

29. The Net-Lib Repository for Linear
Problems. (n.d.).
Available:http://www.netlib.org/lp/data

30. Illes T, Terlaky T. Pivot versus interior
point methods: Pros and cons. European
Journal of Operational Research.
2002;140(2):170-190.

31. Huangfu Q. High performance simplex
solver. Ph.D. dissertation, University of
Edinburgh; 2013.

32. Koberstein A. The dual simplex method,
techniques for a fast and stable
implementation. Ph. D. Dissertation; 2005.

© 2019 Inayatullah et al.; This is an Open Access article distributed under the terms of the Creative Commons Attribution
License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any
medium, provided the original work is properly cited.

Peer-review history:
The peer review history for this paper can be accessed here:

http://www.sdiarticle3.com/review-history/48708

