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Abstract

The position of galaxies on the stellar mass, star formation rate (SFR) plane with respect to the star-forming main
sequence at each redshift is a convenient way to infer where the galaxy is in its evolution compared to the rest of
the population. We use Hubble Space Telescope high-resolution images in the GOODS-S field from the the
Cosmic Assembly Near-IR Deep Extragalactic Legacy Survey (CANDELS) and fit multiwavelength lights in
resolution elements of galaxies with stellar population synthesis models. We then construct resolved kpc-scale
stellar mass, SFR surface density curves for galaxies at z∼1. Fitting these resolved main sequence curves with
Schechter functions, we parameterize and explain the multiwavelength structure of galaxies with three variables:
f*, α, and M*. For quenched galaxies below the main sequence, we find an average high-mass slope (α) of the
resolved main sequence curves to be ∼−0.4. The scatter of this slope is higher among the lower mass star-forming
galaxies and those above the main sequence compared to quenched galaxies, due to lack of an evolved bulge. Our
findings agree well with an inside-out quenching of star formation. We find that the knee of the Schechter fits (M*)
for galaxies below the main sequence occurs at lower stellar mass surface densities compared to star-forming
galaxies, which hints at how far quenching has proceeded outward.

Unified Astronomy Thesaurus concepts: Galaxies (573); Star formation (1569); Galaxy quenching (2040); Galaxy
structure (622); Galaxy bulges (578); Dynamical evolution (421); Astrostatistics (1882); Galaxy evolution (594)

1. Introduction

The past 13 billion years witnessed a vast evolution from
tiny quantum fluctuations to the wide variety of galaxy
structures and shapes that we observe today. Studies of scaling
relations among the physical properties of galaxies and their
evolution with cosmic time have not only been critical in
shaping our current understanding of galaxy formation and
evolution (e.g., Faber & Jackson 1976; Tully & Fisher 1977),
but are as well a magnificent aid in reducing systematics in
cosmology (e.g., Huff & Graves 2014)

One such scaling relation is the tight correlation between the
star formation rate (SFR) and stellar mass in star-forming
galaxies (i.e., star-forming main sequence) out to high redshifts
(e.g., Lilly et al. 2013; Speagle et al. 2014; Salmon et al. 2015),
with the bulk of star formation occurring primarily in massive
star-forming galaxies as compared to less massive systems
(e.g., Noeske et al. 2007; Bell et al. 2005; Reddy et al. 2006). A
population of passive galaxies also exists and lies below the
main sequence, whereas starbursts lie above. The slope of the
main sequence is almost constant at each epoch but the zero-
point evolves significantly with time. The cause of the
evolution in the main sequence is not very well understood.
There is also discrepancy among the slope and scatter around
the relation reported in different studies using different SFR
diagnostics and various sample selections.

With the ever-increasing wealth of high-resolution observa-
tions, we have, however, entered a new era that moves beyond
studying galaxies as single data points and into one that
systematically probes resolved properties of large samples of
galaxies (e.g., Guo et al. 2012; Wuyts et al. 2012; Hemmati
et al. 2014, 2015; Ellison et al. 2020). In this Letter, we explore
the resolved star formation surface density versus stellar mass

surface density plane of z∼1 galaxies and its relation to the
integrated star-forming main sequence. Section 2 introduces the
sample and data used in this work. In Section 3 we explain the
method used to measure the resolved main sequence for
individual galaxies (i.e., star formation surface density versus
stellar mass surface density). The bridge between the resolved
main sequence and the integrated SFR-stellar mass plane is
presented in Section 4. Finally in Section 5, we address and
discuss sources of uncertainty. Throughout this Letter all
magnitudes are expressed in AB system (Oke & Gunn 1983)
and we use standard cosmology with H0=70 km s−1 Mpc−1,
ΩM=0.3, and Ω Λ=0.7.

2. Sample

Galaxies for this study are selected from the GOODS-S field
where science-ready deep multiband high-resolution optical
and near-infrared (near-IR) Hubble Space Telescope (HST)
images from the Cosmic Assembly Near-IR Deep Extragalactic
Legacy Survey (CANDELS; Grogin et al. 2011; Koekemoer
et al. 2011) exist. We use images in four optical pass bands
from the Advanced Camera for Survey (ACS): F435W,
F606W, F775W, and F850lp as well as three from the Wide
Field Camera 3 (WFC3): F105W, F125W, and F160W.
CANDELS also publicly provides catalogs (Guo et al. 2013

in the GOODS-S ) of multiwaveband photometries along with
estimates of integrated physical properties of galaxies (e.g.,
redshifts, sizes, stellar masses, SFRs). We focus our studies
here on z∼1 galaxies, where the HST observations cover rest-
frame ultraviolet (UV) to near-IR wavelengths and hence, can
provide reliable estimates of the resolved physical properties.
This redshift regime is also optimal for our aim because while
the star-forming main sequence of galaxies at z∼1 is well in
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place and well studied there are also plenty of galaxies below
the main sequence to study statistically.

In the left panel of Figure 1, we present the sample selected
for this work on top of all z∼1 galaxies in the GOODS-S field
on the SFR-stellar mass plane. Both stellar mass and SFR here
are taken from the public CANDELS catalogs. In addition to
our selection cut of stellar mass (>10.09M*/Me) and redshift
(0.8<z<1), we also remove elongated galaxies (b/a>0.5)
and those fainter than 26 AB mag in the F160W and we only
include galaxies with spectroscopic redshifts. This leaves us
with 545 galaxies. We show HST cutouts in F435W, F775W,
and F160W filters for two galaxies (a star-forming galaxy on
top and a passive galaxy on the bottom) from the sample in the
right panels of Figure 1.

3. Resolved Main Sequence

To measure resolved properties for the galaxies in our
sample from the HST images, we follow the same steps
outlined in Hemmati et al. (2014), using an improved and now
fully automated python pipeline (see, e.g., Jafariyazani et al.
2019). The pipeline makes large 100×100 pixel cutouts from
the seven HST bands centered on the R.A. and decl. of each
sample galaxy, where each pixel in the image corresponds to
0 06. The resolution of the shorter wavelength cutouts are then
matched to the resolution of F160W, using the convolution
method in astropy and a matching kernel created by the
photutils package using the point-spread functions (PSFs) of
HST images. The initial large size of the cutouts is selected to
remove issues due to PSF matching near edges of the cutouts.
After PSF matching smaller cutouts of 40×40 pixels are
regenerated, which correspond to a physical scale of ∼20 kpc
at z∼1. To make the pixel photometric catalog per galaxy we
mask background pixels surrounding the galaxy using a
segmentation routine that we wrote and fine tuned to find
edges of galaxies. We used image processing modules from the
SciPy.ndimage in the segmentation maker routine.

Given the pixel-based photometric catalogs, we fit for the
resolved kiloparsec-scale physical properties at each resolution
element with the LePhare (Arnouts et al. 1999; Ilbert et al.
2006) spectral energy distribution (SED) fitting code. We use
the Bruzual and Charlot (Bruzual & Charlot 2003) stellar

population synthesis models, a Chabrier initial mass function
(Chabrier 2003), exponentially declining or τ model star
formation histories, sub-solar stellar metallicity, and the
Calzetti dust attenuation curve (Calzetti et al. 2000) to build
the library of model SEDs. The justification for these choices in
building the model library and the effect of modifications to
these assumptions is fully discussed in Hemmati et al. (2014).
There, we also performed tests of accuracy of the resolved
SED-fitting measurements by comparing integrated and sum of
resolved measured values.
The best-fitting model representing resolved galaxy photo-

metries is found and used by LePhare to assign stellar mass
surface densities and SFR surface densities to individual
resolution elements in all galaxies in our sample. Figure 2
shows the SFR surface density versus the stellar mass surface
density or the so-called resolved main sequence of star
formation for four sample galaxies color coded with distance
of the resolution element from the center of each galaxy.
The shapes of the resolved main sequence curves are very

informative about the physical properties of galaxies. Stellar
mass surface density increases toward smaller distances from
the center of the galaxy. SFR surface density also mostly
increases from the outer disks toward the center but with
decreasing slopes. It is important to keep in mind that both
stellar mass and SFR surface densities are fit with the same
SED fitting code and models and hence the tightness of these
curves can be partly due to the dependence of both on the
library of model SEDs used to fit for these physical properties.
However, each resolution element is fit independently of the
others and the tight distributions observed are mostly due to
gradual change of photometry from one resolution element to
the next.
The general shape of the resolved main sequence is rising in

low stellar mass densities, reaches a peak, and falls toward
massive pixels located in the center of galaxies. This shape can
be parameterized with a Schechter function (1), which is
typically used to fit the luminosity or mass function of galaxies.

( ) ( )( )( ) ( )f= ´ ´a- + - -
m eSF 10 1M m 1 10 M m

* * * *
* *

In Equation (1), SF and m* are the SFR and stellar mass
surface densities, respectively. We used scipy.curvefit with
bounds on possible values to fit for the three free parameters:

Figure 1. Left panel: galaxies selected for this study are shown as red circles on top of all GOODS-S galaxies at z∼1 shown with cyan dots. Black dashed line shows
the main sequence of star-forming galaxies at this redshift from Noeske et al. (2007). Right panels: HST cutouts in F435W, F775W, and F160W of a star-forming and
quenched galaxy on top and bottom panels, respectively.
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f* the normalization factor, α the high-mass slope, and M* the
characteristic mass or the knee of the resolved main sequence.
The best-fit Schechter functions and their parameters are also
shown in Figure 2 for the four sample galaxies.

4. The Bridge

Location on the integrated SFR–M* plane with respect to the
main sequence of star-forming galaxies at each redshift is a
simple way to infer how far each individual galaxy is in its
evolution. For instance, Scoville et al. (2017), based on multi-
variable model fitting bins galaxies out to high redshift on
integrated SFR–M* planes, studied star formation efficiencies
and interstellar medium mass estimates from Atacama Large
Millimeter/submillimeter Array (ALMA) submillimeter obser-
vations as a function of distance from the star-forming main
sequence. Here, we adopt a similar strategy and bin our sample
on the integrated SFR–M* plane to study how the shape of the
resolved main sequence curves vary across this plane.

The left three columns of Figure 3 show the median (top
row) and standard deviation (bottom row) of best-fit Schechter
parameters in bins of stellar mass and SFR. We have excluded
galaxies with poor Schechter fits. We calculated the goodness
of fit using the diagonal elements of the covariance matrix of
parameters measured by curvefit. We also exclude bins with
only one galaxy. The bottom-right panel of Figure 3 shows the
number of galaxies in each bin. The integrated star-forming
main sequence at z∼1 (Noeske et al. 2007) is over plotted on
all panels (red solid line).

The median of f* is lower for galaxies on and above the star-
forming main sequence compared to the galaxies below the
star-forming main sequence. f* increases smoothly at each
fixed stellar mass bin with decreasing SFR and at fixed SFR
bins, with increasing stellar mass. The standard deviation of f*,
however, does not show dependence on location with respect to
the star-forming main sequence.
The variation in α values is not as clear as f*. As can be seen

from the σα plot the variation is lower in the higher mass end
of the main sequence compared to lower mass bins. This can be
explained by the evolution of the central bulge of galaxies
toward higher masses. More massive galaxies have more
evolved bulges, with the highest stellar mass surface densities.
By definition evolved bulges have lower specific SFRs
compared to a less evolved bulge. α or the high stellar mass
surface density slope of the Schechter function corresponds to
the spread of the pixels in the central parts of the galaxy where
the bulges form. If most resolution elements have high stellar
mass and low SFR surface densities, scatter of alpha is low and
if some pixels are still forming stars at higher rates then the
bulge is not fully evolved and scatter is large. Our results show
that the scatter of α is low at higher mass galaxies, meaning the
central parts of these galaxies are more settled compared to
lower mass galaxies, where either the bulge has not fully
formed yet or the star formation is still ongoing in some of the
resolution elements. The presence of an evolved bulge imposes
strong constraint on the high-mass end of the Schechter
functions. The high σα values above the main sequence, also
point to the increased scatter in their resolved main sequence

Figure 2. Resolved star formation surface density vs. stellar mass surface density plots of four sample galaxies color coded by distance from the center. Dashed black
lines show the best Schechter function fit to data.
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curves at higher stellar mass surface densities, which in
addition to lack of an evolved bulge can be possibly due to
presence of more star-forming clumps in these systems. At
fixed stellar mass bins however, an increase in α is seen as SFR
decreases.

The third column of Figure 3 shows variation of M* across
the bins of stellar mass and SFR. A clear decrease of M*

diagonally from low mass and high SFR to high mass and low
SFR distance indicates that the Schechter function breaks in
lower characteristic masses in more massive and evolved
systems. The average scatter of M* in bins is ∼0.3 dex and the
maximum reaches 0.5 dex in the bin with the highest integrated
stellar mass and SFR.

The top-right panel of Figure 3 summarizes the plot by
showing an average shape (with normalized y-axis) of the
resolved main sequence curve for galaxies (at

( ) ~M MLog 10.5* ) on and below the main sequence.

5. Discussion

Comparison of the Schechter fits to resolved main sequence
curves on and below the integrated star-forming main sequence
points toward an inside-out quenching of star formation. The
more quiescent galaxies below the main sequence have their
knee of the Schechter fit at lower masses and quenching is
pushed toward outer radii. Our findings in this Letter conform
well with previous literature linking the inside-out quenching to
the growth of the central bulge (e.g., Fang et al. 2013;
Hemmati 2015; Tacchella et al. 2015; Jafariyazani et al. 2019;
Morselli et al. 2019).

Here, we used the Schechter function to fit the resolved main
sequence curves for the first time. Similar to the literature on
luminosity functions, one concern can be why Schechter
functions are chosen and not double power laws or other
functional forms. Here, the aim was to investigate whether and
how the shape of the resolved main sequence informs us about
its integrated properties, specifically its position with regards to

the main sequence of star formation and whether it is quenched.
Schechter function parameters, i.e., the faint end slope (here the
high-mass slope), the knee or the characteristic luminosity/
mass/magnitude, and the normalization are well known by the
astronomy community and very easy to visually interpret.
We have also excluded sources with poor Schechter fits from

the final analysis. Apart from the possibility of intrinsically
distinct structural profiles in a small subset of targets (e.g.,
active galactic nuclei, mergers), large errors in some of the
Schechter fits can be due to imperfections/failures in various
steps of the automated measurement (e.g., segmentation mask,
resolved SED-fitting on low surface brightness resolution
elements). Here, the sample is being trimmed based on curve
fitting error rather than in the beginning based on stellar mass
surface density and signal-to-noise ratio of pixels. Choosing the
cut value is not straightforward. Having a low fitting error
threshold (E<0.25) results in removing 80% of objects, with
the majority of the remaining galaxies being massive and star-
forming. Changing this threshold to a very large value
(E<20) results in removing only 10% of objects from the
sample, 98% of which are less massive than

( ) =M Mlog 9.75* . E<5 removes 18% of galaxies as poor
fits, with 97% of them being less massive than 9.75. We chose
galaxies with (E<1.5) removing 30% of the sample, 92% of
which being galaxies with ( ) <M Mlog 9.75* . The exact
value of the cut is arbitrary; however, with the chosen value the
fits visually represent the overall spread of data on the –M SFR*
plane well. Moreover, the trends in Figure 3 are there
regardless of this choice. The trends only get clearer where
better fits are kept and having a moderate value of 1.5 ensures
enough statistics.
The resolved main sequence curves also clarify to some

extent, the scatter around the main sequence of star formation.
Given which galaxies end up in a given sample, the more
bulge-dominated ones will bring the integrated measure down
while the star-forming clumps within a disk will push the
whole thing up. We note here again the dependence of the

Figure 3. Schechter parameters best fitted to the resolved main sequence of star formation of individual galaxies are shown on the binned integrated stellar mass-SFR
plane. The three left columns show the median (top row) and standard deviation (bottom row) of f*, α, and M*. Red solid line shows the main sequence of star-
forming galaxies at z∼1 to guide the eye. The top-right panel shows two Schechter functions with average value of galaxies on and two dex below the main sequence
at ( ) ~M MLog 10.5* . The bottom-right panel shows number of galaxies in each bin of SFR and stellar mass.
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stellar mass and SFR surface density on the model library used
for fitting the SED of each resolution element. The continuity
of the shapes seen in the resolved curves, depend on parameter
steps used in defining the model library. This is because the
photometry is changing rather smoothly in kpc-scale at z∼1
galaxies with changing radius. One may use an independent
measurement of the resolved SFR to improve upon this
analysis. This can be done using hydrogen Balmer lines
observed with integral field spectrographs to measure dust
corrected SFR from Hα and Hβ. Future work is also needed to
extend this analysis to a broader redshift range and study the
evolution of star formation in galaxies. The high spatial
resolution and longer wavelength coverage of the James Webb
Space telescope makes it an optimal choice for this purpose.
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