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ABSTRACT 
 

A non-generative, analog methodology was used to downscale daily precipitation from CMIP5-
CNRM-CM5 developed by Météo-France/CNRS and CMIP5-CANESM2 of the Canadian Centre for 
Climate Modelling and Analysis. The downscaling reduces the 2° resolution GCM output to point 
station data. Sensitivity experiments for four different predictor variables (PVs) were carried out to 
examine the most significant PVs for the case of Zambia. ERA-Interim reanalyses was used for 
calibration (75%) and validation (25%) for the period 1981 – 2012. The Root Mean Square Error 
(RMSE) was used to compute the predictive power of CNRM-CM5 and CANESM2 by comparing 
the difference between their simulation results against ERA-Interim. Pearson correlation coefficient 

Original Research Article 



 
 
 
 

Libanda et al.; AJOPACS, 1(2): 1-9, 2016; Article no.AJOPACS.31545 
 
 

 
2 
 

(r) was also used to assess the linear relationship between the datasets. Downscaled and 
observed data were compared and analysed. Results indicate that both CNRM-CM5 and 
CANESM2 perform well in perfect prognosis over the period 1970 – 2000 averaged over longitude 
19°E - 37°E and latitude 22°S - 4°S. Pearson correlation results show that the combination PV2: 
T850, Q850, and U850 perform well at 95% confidence level. These results fill the knowledge gap 
of the behaviour of different variables for climate change projections and impact assessment 
studies in Zambia. Specifically, this study suggests a starting point in the selection of predictor 
variables for climate change studies in Zambia. 

 
 
Keywords: Predictor selection; statistical downscaling; precipitation; Zambia. 
 

1. INTRODUCTION 
 
Zambia is a southern African country [1] boarded 
by 8°S and 18°S, and 21.8°E and 34°E [2]. The 
country experiences a tropical climate [3] with 
precipitation patterns mainly influenced by the 
movements of the Inter-Tropical Convergence 
Zone (ITCZ) [4,5,6]. The ITCZ is a zone of 
convergence between the Northeast and 
Southeast Trade winds [7]. The trekking of the 
ITCZ begins to affect Zambia from the end of 
October in an ill-defined manner [8,9] until during 
the period December – February (DJF) when 
Zambia experiences much of her rains [10]. 
Investigating the amount and distribution of 
rainfall over Zambia is central to the country’s 
management of water resources [11]. 
 

However, currently, products of General 
Circulation Models (GCMs) are too coarse        
[11-17] to be used in predicting rainfall patterns 
at local level. Statistical downscaling is therefore 
used as a technique that bridges the gap 
between GCM outputs and products useful for 
impact studies. This is done through the 
establishment of statistical relationships between 
local climate variables, in this case precipitation, 
and large-scale predictors. The developed 
relationships are applied to the outputs of global 
climate model experiments [18]. Statistical 
downscaling approaches have thus been used in 
many studies to produce reliable station-based 
rainfall data with varied assignments of statistical 
confidence. For example [19] used statistical 
downscaling in a precipitation study over 
Campbell River basin, British Columbia, Canada. 
[20] also used a stochastic weather generator to 
statistically downscale precipitation in a study on 
seasonal precipitation and temperature forecasts 
produced by the International Research Institute 
for Climate and Society (IRI). Several studies 
[21,22] show that at the core of statistical 
downscaling methods lies the establishment of 
statistical relationships between large-scale 
atmospheric variables (Predictors) and local-

scale variables (Response). The dynamics of 
local meteorological variables are then projected 
by using large scale information at the local level 
[idem, 21]. 
                            
Despite these advances in statistical 
downscaling methods, the use of statistically 
downscaled data in understanding the variability 
of rainfall in Zambia is still at its infancy. 
Precipitation has higher variability as compared 
to temperature. It is therefore more difficult to 
project than temperature. For this reason, 
caution needs to be attached to all factors related 
to it’s projection. The objective of this paper is to 
show the behaviour of different Predictor 
Variables (PVs) in describing rainfall patterns 
over Zambia. Results documented herein will be 
useful in studies relating to precipitation 
projection over Zambia. 
 
2. DATA AND METHODOLOGY 
 
2.1 Response Variables 
 
In the present study, Response is used after [22] 
to denote the use of the dependant precipitation 
variable as observed by thirty nine 
Meteorological stations (Fig. 1) sourced from             
the Zambia Meteorological Department and 
predicted by independent variables (PVs)  shown 
in Table 2. 

 
The list of stations with the exact longitudes and 
latitudes used in this study is given in Table 1. 

 
2.2 Predictor Variables 
 
[idem, 23,24,25] have all suggested the use of 
moisture, wind, and temperature as key PVs. 
The choice of predictors was based on large-
scale circulations simulated by CNRM-CM5             
and CMIP5-CANESM2. To understand the most 
significant PVs in downscaling precipitation over 
Zambia, temperature, humidity, Zonal wind, and 



Geo-potential were put in four different class 
combinations (Table 2) and tested for sensitivity 
 

Fig. 1. Map of Zambia showing stations used in the study
 

Table 1. Geographical location 
 

Name 
Kawambwa 
Mbala 
Mwinilunga 
Mansa 
Samyfa Marine 
Kasama 
Misamfu Agro 
Mpika 
Isoka 
Zambezi 
Kasempa 
Kabompo 
Solwezi 
Ndola 
Kafironda Agro 
Serenje Agro 
Mkushi Agro 
Msekera 
Chipata 
Lundazi 
Mfuwe 
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potential were put in four different class 
combinations (Table 2) and tested for sensitivity 

over longitude 19°E - 37°E and latitude 22
4S° (Zambia). 

 
Map of Zambia showing stations used in the study 

location of meteorological stations used in this study

Latitude (°S) Longitude(°E) 
9.793 29.076 
9.028 31.553 
11.74 24.431 
10.173 28.942 
11.371 29.911 
10.224 31.14 
10.171 31.225 
11.901 31.433 
10.272 32.68 
13.534 23.108 
13.457 26 
13.596 24.208 
12.171 26.367 
12.994 28.659 
12.614 28.148 
13.227 30.215 
14 29.996 
13.646 32.563 
13.564 32.589 
12.294 33.175 
13.255 31.931 
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E and latitude 22°S – 

 

stations used in this study 
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Name Latitude (°S) Longitude(°E) 
Kalabo 14.997 22.646 
Mongu 15.254 23.151 
Kaoma 14.795 24.804 
Mumbwa 15.075 27.189 
Kafue Polder 15.777 27.921 
Kabwe Agro 14.395 28.828 
Kabwe Main 14.448 28.302 
Lusaka Int. Airport 15.324 28.448 
Lusaka City 15.417 28.321 
Mt. Makulu 15.548 28.248 
Petauke 14.251 31.339 
Senanga 16.111 23.298 
Sesheke 17.477 24.301 
Livingstone 17.823 25.82 
Magoye 15.998 27.617 
Choma 16.838 27.07 
Chipepo 16.795 27.879 

 

 
 

Fig. 2. Study domain averaged over longitude 19°E - 37°E and latitude 22°S - 4°S 
 

2.3 Downscaling Approach 
 
The downscaling approach employed in this 
study is based on an analog statistical 
downscaling method. This technique associates 

the simulations of large-scale synoptic 
circulations with local variables in check with 
station observation datasets. ERA-Interim 
reanalyses is used for calibration (75%) and 
validation (25%) for the period 1981 – 2012.   
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Fig. 2 shows the domain of the study. The 
training (calibration) is based on 75% of the 
period in order to use the remaining 25% to 
ascertain (test/validate) that the calibration was 
correctly done. Studies that have used the 
analog technique include [26]. 

 
Table 2. Predictor Variables (PVs) used in this 

study 
 
 PV Level 
 
PV1 

Temperature   T700 
Q humidity Q700 
U ZonalWind U850 

 
PV2 

Temperature   T850 
Q humidity Q850 
U ZonalWind U850 

 
 
PV3 

Temperature   T850 
Temperature   T700 
Q humidity Q850 
Q humidity Q700 
U ZonalWind U850 

 
 
 
PV4 

GPM Z850 
Temperature   T850 
Temperature   T700 
Q humidity Q850 
Q humidity Q700 
U Wind U850 

 

2.4 Statistical Analysis 
 
2.4.1 Root mean square error (RMSE) 
 
In order to understand the ability of CMIP5-
CNRM-CM5 and CMIP5-CANESM2 to reproduce 
precipitation trends over Zambia, Root Mean 
Square Error (RMSE) was used. RMSE gives a 
measure of the departure of predicted data from 
observed. Many studies have used RMSE in 
precipitation studies over different regions [27]. 
 
The RMSE of a model’s prediction with respect 
to a given PV Xmodel is defined:  
 

n
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Where Xobs is observed values and Xmodel is 
modelled values at time/place i. 
 

2.4.2 Pearson correlation coefficient (r) 
 
Pearson’s correlation (r) was used to scrutinize 
the strength of the linear relationship (if any) 
between GCMs and ERA-Interim. The Pearson 

correlation is obtained by dividing the covariance 
of the two variables by the product of their 
standard deviations and is thus given in Eq. 2 
below: 
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Pearson gives 1 in the case of a perfect upward 
linear relationship, and -1 in case of a downward 
linear relationship, and any values in between 
indicate the magnitude of relationship between 
GCMs and ERA-Interim. A correlation coefficient 
of 0 means no linear relationship exists. 
 

3. RESULTS AND DISCUSSION 
 
3.1 Annual Cycle and Interannual 

Variability 
 
Outputs of CMIP5-CNRM-CM5 and CMIP5-
CANESM2 were investigated in comparison to 
observed station data (1970 – 2000) to gauge 
the strength of the Models and hence their 
usefulness in consequent analysis. Results (Fig. 
3) show that both CNRM-CM5.1 and CANESM2 
are able to capture the annual cycle of the rain 
season over Zambia. The rainy season which 
begins in October (transitional month) and goes 
on to April (transitional month) was well 
represented by both models. Similarly the dry 
season from May to September was captured. 
 

Apart from the amount of rainfall received, spatial 
distribution is key to the agricultural and water 
resources sectors of Zambia. Therefore, this 
study also investigated the ability of CNRM-CM5 
and CANESM2 to reproduce the distribution in 
comparison to observed data over Zambia. 
Results (Fig. 4) show that generally both GCMs 
are able to capture the downward gradient from 
the North to the south of the country. However, in 
comparison to observed data (a), CNRM-CM5 
(b) performs better than CANESM2 (c) which 
seems to be observing much lower precipitation 
over Chipata and parts of Eastern Province. 
Standardized anomaly of these results is given in 
Fig. 5. 
 

3.2 RMSE 
 
The Fig. 6 of the root mean square error (RMSE) 
show that PV2 i.e. T850, Q850, and U850 
performs better, with an RMSE value of 4.1, than 



PV1, PV3, and PV4 which gave 4.3, 4.5, and 4.6 
respectively. These results also suggest that PV1 
i.e. T700, Q700, and U850 is the closest 
combination to being able to predict precipitation 
over Zambia. This analysis also revealed that an 
increase in the number of PVs reduced the 
predictive strength of the models. For example, 
PV4 which included geo-potential at the 850 level 
in addition to T850, Q850, and U850 performed 
poorly. 
 
3.3 Pearson Correlation Coefficient (r)
 
Table 3 gives the Pearson correlation results (r) 
which shows that the calibration and validation of 
the statistical downscaling approach was 
 

 

Fig. 3. Mean annual cycle of rainfall (mm) over Zambia for station data (blue), CANESM2 (red), 
and CNRM-CM5 (green), averaged over longitudes 21E

 

Fig. 4. Monthly mean DJF rainfall 
being observed, (b) CNRM
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PV1, PV3, and PV4 which gave 4.3, 4.5, and 4.6 
respectively. These results also suggest that PV1 
i.e. T700, Q700, and U850 is the closest 
combination to being able to predict precipitation 
over Zambia. This analysis also revealed that an 

n the number of PVs reduced the 
predictive strength of the models. For example, 

potential at the 850 level 
in addition to T850, Q850, and U850 performed 

3.3 Pearson Correlation Coefficient (r) 

elation results (r) 
which shows that the calibration and validation of 
the statistical downscaling approach was 

correctly done with all PVs giving an r value of 
over 0.8. These results have also complimented 
the findings of RMSE with PV2 being the best 
correlated combination. It is therefore the finding 
of this experiment that for optimum results in 
downscaling precipitation over Zambia in perfect 
prognosis using analog method, the most 
informative predictors are: T850, Q850, and 
U850. 
 
Table 3. Pearson correlation (r) of GCMs with 

ERA-interim 
 

 PV1 PV2 PV3
CNRM 0.81 0.84 0.81
CANES2 0.8 0.83 0.8

Mean annual cycle of rainfall (mm) over Zambia for station data (blue), CANESM2 (red), 
CM5 (green), averaged over longitudes 21E–34E and latitudes 190S–

period 1970 – 2000 

 
rainfall (mm) during the period 1970 – 2000 over Zambia with (a) 

being observed, (b) CNRM-CM5 and (c) CANESM2 
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correctly done with all PVs giving an r value of 
over 0.8. These results have also complimented 
the findings of RMSE with PV2 being the best 

related combination. It is therefore the finding 
of this experiment that for optimum results in 
downscaling precipitation over Zambia in perfect 
prognosis using analog method, the most 
informative predictors are: T850, Q850, and 

Pearson correlation (r) of GCMs with 

PV3 PV4 
0.81 0.82 
0.8 0.81 

 

Mean annual cycle of rainfall (mm) over Zambia for station data (blue), CANESM2 (red), 
–7.5S for the 

 

2000 over Zambia with (a) 
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Fig. 5. Interannual variability of the mean DJF rainfall over Zambia, averaged over the period 
1970 – 2000 

 

 
 
Fig. 6. Root mean square error results for mean rainfall during the period 1970 – 2000 averaged 

over 19°E - 37°E and latitude 22°S - 4°S 
 

4. CONCLUSION 
 
The analysis was carried out in order to identify 
suitable predictors associated with statistical 
downscaling of precipitation in Zambia. CNRM-

CM5 and CANESM2 were trained (calibrated) 
and tested (validated) using ERA-Interim 
reanalyses for the period 1981 – 2012. The 
downscaled products of CNRM-CM5 and 
CANESM2 were then compared to observed 
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precipitation data. Results showed that both 
CNRM-CM5 and CANESM2 performed well in 
perfect prognosis over the period 1970 – 2000 
averaged over longitude 19°E - 37°E and latitude 
22°S - 4°S. However, in comparison to observed 
data CNRM-CM5 captured the trend of 
precipitation better than CANESM2 which 
seemed to be observing much lower precipitation 
over Chipata and parts of Eastern Province.  
 
Sensitivity experiments for four different predictor 
variables (PVs) were carried out to examine the 
most significant PVs for the case of Zambia. A 
combination of PV2: T850, Q850, and U850 
performed better than any other combinations at 
95% confidence level. These results show that 
CNRM-CM5 and CANESM2 are useful for 
climate change studies over Zambia. 
Additionally, PV2 has shown to be the most 
significant PV when using the analog approach 
to statistically downscale precipitation over 
Zambia. These results will be useful in forth 
coming research lines relating to precipitation 
projection over Zambia. 
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