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Abstract

Free particle bound states - which exist only as microscopic systems - are discussed in quantum
field theory assuming a QED like Lagrangian with fermion and boson fields. Due to a particular
structure, severe boundary conditions can be defined related to geometry, momentum and
energy-momentum conservation. Applied to hadrons and atoms, masses or binding energies as
well as root mean square radii - which are different by many orders of magnitude between hadrons
and atoms - are well described. The fulfillment of a total of about 10 boundary conditions
(with three adjustable parameters only) can be considered as a unique and precise test of the
mathematical structure of the underlying field theory.
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1 Introduction

Bound or stationary systems belong to the most interesting objects in physics, since their frequency
or binding energy is stable over long periods of time. Their average potential and kinetic energies
are related by the virial theorem. Often special boundary conditions are needed, which allow crucial
tests of the structure of the underlying theories.

A classical example of a stationary system is the pendulum, which exists in many different forms.
This system is characterized by a permanent transformation of potential energy into kinetic energy
and vice versus. A rather different type of bound state is found in gravitational systems, for which
the gravitational attraction is balanced by a rotation of the system. Examples are the orbiting
of planets around a star or satellites surrounding the earth. In addition to the virial theorem,
momentum conservation pm + pM = 0 requires that the radial moment of the (lighter) rotating
body pm = rm ∗mvm is compensated by that of its massive partner pM = r̃M ∗MvM , where vx are
the rotation velocities.

There is another important type of rotational bound state, free particles in the vacuum, which are
not coupled to other pieces of matter. Such states can be found only in microscopic systems in the
form of atoms, nucleons or even simpler hadrons built out of elementary particles. Importantly, for
these systems binding of fermions is not sufficient, accompanying bosons (not only a boson-exchange
interaction) are essential to equilibrate the momentum of fermions. This can be seen in the following
way: to satisfy the virial theorem, the fermion potential energy is accompanied by kinetic energy in
form of rotation. But this motion would be spurious, if the momentum of the participating fermions
could not be counterbalanced by neutral particles (bosons), which don’t contribute to the potential
energy. This indicates that these systems must have a double bound state structure of fermions
and bosons, as shown schematically in Fig. 1.

Fig. 1. Schematic view of a free particle bound state, in which the rotation of
fermions is counterbalanced by bosons
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2 Theoretical Description

For microscopic systems a quantum description is essential, which includes relativity and general
transformation invariances, as realized in field theory [1]. In the present discussion we start from
quantum electrodynamics (QED) by modifying the Lagrangian to include a double structure of
fermions and bosons as shown in Fig. 1. This leads to a gauge invariant Lagrangian given by

L =
1

m̃2
(Ψ̄Dν) iγ

µDµ (DνΨ) − 1

4
FµνF

µν , (2.1)

where m̃ is the mass parameter and Ψ are charged fermion fields, Ψ = Ψ+ and Ψ̄ = Ψ−. Vector
boson fields Aµ (photons) with coupling g to fermions are contained in the covariant derivatives
Dµ = ∂µ − igAµ. The second term of the Lagrangian represents a Maxwell term with Abelian field
strength tensors Fµν given by Fµν = ∂µAν − ∂νAµ, which gives rise to both electric and magnetic
type coupling.

Due to three covariant derivatives Dµ = ∂µ − igAµ the Lagrangian (2.1) leads to a higher order
field theory with higher derivatives of boson and fermion fields. Note that there are two strong
arguments against the use of higher order Lagrangians. First, the necessary 1/m̃n factor gives
rise to uncontrolled divergences in standard (divergent) field theory, see e.g. ref. [1]. Second,
Lagrangians with higher order fermion fields will lead to nonphysical solutions [2]. However, for
the present Lagrangian both arguments do not apply: Eq. (2.1) leads to a finite theory due to
a constrained normalization of wave functions, for which a 1/m̃2 factor is acceptable and leads to
realistic solutions. Further, in the present formalism nonphysical solutions can be excluded by strict
boundary conditions, as discussed below.

By inserting Dµ = ∂µ− igAµ and DνD
ν = ∂ν∂

ν − ig(Aν∂ν +∂νAν)− g2AνAν in eq. (2.1), the first
part of L gives rise to a number of terms, which contain boson and fermion fields and/or derivatives.
All terms containing the derivative of the fermion field ∂νΨ are related to a complex dynamics of
the system as a whole. For stationary solutions only two terms of the Lagrangian contribute

L2g =
−ig2

m̃2
(Ψ̄Aν) γ

µ∂µ (AνΨ) (2.2)

and

L3g =
−g3

m̃2
(Ψ̄Aν) γ

µAµ (AνΨ) . (2.3)

From the Lagrangians (2.2) and (2.3) fermion matrix elements with boson propagators have been
derived by using standard procedures, as the evaluation of fermion ground state expectation values
or generalized Feynman diagrams, see e.g. ref. [1]. According to these rules the matrix elements can
be written in the form Mf =< g.s.| K(p′ − p) |g.s. >∼ ψ̄(p′) K(q) ψ(p), where ψ(p) is a fermion
wave function ψ(p) = 1

m̃3/2Ψ(p1)Ψ(p2) and K(q) a kernel related to the boson structure of the

Lagrangian. In the present case a kernel is needed of the form K(q) = 1
m̃5 [O3(qi) O

3(qj)], where
O3(qi) represents a product of boson fields or derivatives, as given in eqs. (2.2) and (2.3). Using
α = g2/4π this leads to matrix elements of the form

M2g =
α2

m̃5
ψ̄(p′) Aν(q

′
4)A

ν(q′3) γµγ
ρ ∂Aσ(q

′
2) ∂A

σ(q′1) ψ(p) (2.4)

and

M3g =
−α3

m̃5
ψ̄(p′) Aν(q

′
4)A

ν(q′3) γµγ
ρAµ(q2)A

ρ(q1) Aσ(q
′
2)A

σ(q′1) ψ(p) . (2.5)

One may compare these matrix elements to similar ones derived from a first order Lagrangian
Lf.o. = Ψ̄ iγµD

µΨ − 1
4
FµνF

µν as used in QED. By writing in a similar way M = ψ̄(p′) K(q) ψ(p),
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with a kernel K(q) = 1
m̃

[O1(q2) O
1(q1)] one obtains for the case ∂Ψ = 0 only one (boson-exchange)

matrix element Mf.o. =
−α
m̃

ψ̄(p′) γµγ
ρAµ(q2)A

ρ(q1) ψ(p).

The comparison of both theories shows two essential differences: 1. The ”boson-exchange” matrix
element M3g has a more complex structure than Mf.o. with additional boson fields, needed to
balance the fermion motion. 2. A second matrix element M2g is present, which does not exist in
first order theories. This term leads to a dynamical stabilization of the system, as discussed below.

From these matrix elements bound state potentials can be deduced. First, the γ-matrices can
be eliminated in the usual way by adding a matrix element with interchanged indices, according
to the relation 1

2
(γµγρ + γργµ) = gµρ. Then, by using a gauge condition ∂2Aν = 0 the product

∂Aσ(q
′
2) ∂A

σ(q′1) in eq. (2.4) can be replaced by 1
2
∂2(Aσ(q

′
2)A

σ(q′1)). Further, (analogue to the
fermion wave functions) normalized boson (quasi) wave functions of scalar (µ = ν) and vector
(µ ̸= ν) structure W ν

µ (q
′) = 1

m̃
Aµ(q

′
j)A

ν(q′i) have been introduced, as well as a boson-exchange
interaction V νµ (q) =

1
m̃
Aµ(q2)A

ν(q1) (µ ̸= ν), which is similar to that of first order QED.

By equal time requirement the fermion and boson vectors can be reduced by one dimension, yielding
boson wave functions1 of scalar and vector structure ws(q

′) and wv(q
′) and an interaction vv(q).

This leads to

M2g =
α2

2m̃3
ψ̄(p′) ws(q

′) ∂2ws(q
′) ψ(p) (2.6)

and

M3g =
−α3

m̃2
ψ̄(p′) ws,v(q

′)vv(q)ws,v(q
′) ψ(p) . (2.7)

The bosonic part of eq. (2.7) can also be written in the form of a matrix element, in which the wave
functions w(q′) are connected by vv(q)

Mg =
−α3

m̃2
ws,v(q

′) vv(q) ws,v(q
′). (2.8)

In the following an evaluation of these matrix elements is discussed, for which the Hamiltonian
formalism can be used by relating kinetic and potential energies by (T +V )ψ = Eψ, where E is the
binding energy. For these systems all quantities described in momentum space can be transformed
to r-space by Fourier transformation. Energies, masses and momenta are given in energy units
(using c=1), whereas the constant ~c is used for radius-momentum conversion.

Going to r-space the fermion matrix element (2.6) can be written by

M2g(r) = ψ̄(r) V2g(r) ψ(r) , (2.9)

in which V2g(r) is a potential, which can be derived from a boson Hamiltonian of the form

− α2(~c)2

2m̃

(d2ws(r)
dr2

+
2

r

dws(r)

dr

)
+ V2g(r) ws(r) = Eo ws(r) . (2.10)

This leads to

V2g(r) =
α2(~c)2

2m̃

(d2ws(r)
dr2

+
2

r

dws(r)

dr

) 1

ws(r)
+ Eo . (2.11)

A coupling to the vacuum is made by assuming Eo = 0. This implies that the vacuum is the lowest
state with energy Evac = 0. An important consequence of this is that the elementary fermions
(quantons) have to be massless. This potential leads to a dynamical stabilization of the system:
with positive eigenvalues, created fermion-antifermion pairs are locked during overlapping boson

1with dimension [GeV ].

4



Morsch; BJMCS, 17(6), 1-11, 2016; Article no.BJMCS.27414

fields and form a stable system, which cannot decay. Remarkably, V2g(r) shows a quite linear
rise towards larger radii, very similar to the empirical ”confinement” potential required in hadron
potential models [3].

Fourier transformation of the matrix element (2.7) leads to

M3g(r) = ψ̄(r) V3g(r) ψ(r) , (2.12)

in which the potential V3g(r) has the form of a folding potential

V s,v3g (r) =
α3~c
m̃

∫
dr′ ws,v(r

′) vv(r − r′) ws,v(r
′) (2.13)

with an interaction vv(r) ∼ −~c wv(r).

As an important point, the potential (2.13) can be considered also as boson matrix element, in which
the bosons are ”bound” in the potential vv(r). It is important to note that due to the condition
Eo = 0 both potentials (2.11) and (2.13) yield absolute binding energies, for which no constant can
be added (this is different from other potentials, as e.g. the harmonic oscillator potential).

A natural condition of a double bound state of fermions and bosons requires that the radial form
of the fermion and boson wave functions is similar. Therefore, the existence of two boson wave
functions of scalar and vector structure implies that also corresponding fermion wave functions of
similar form exist

ψs,v(r) ∼ ws,v(r) . (2.14)

This gives rise to two bound states (scalar and vector) without angular momentum (L=0) and
Jπ = 1−. In addition, two states with angular momentum L=1 (coupled to Jπ = 0+) are predicted,
which are not considered here.

For fermion vector coupling normally an angular distribution of dipole form P 2
1 (cosθ) is needed, but

for a free particle without preferred orientation in space there is no angular dependence. However,
in the Fourier transformation a Bessel function j 2

1 (qr) is still required. Orthogonality of these two
wave functions leads to the constraint∫

r2dr ψs(r)ψv(r) =

∫
r2dr ws(r)wv(r) =< rws,wv >= 0 . (2.15)

This condition can be satisfied only, if the wave functions are finite (with finite radial moments).
Condition (2.15) is satisfied for

wv(r) = wvo [ws(r) + βR
dws(r)

dr
] , (2.16)

where wvo is obtained from the normalization of the density w2
v(r) with 2π

∫
rdr w2

v(r) = 1 and
βR = −

∫
r2dr ws(r)/

∫
r2dr [dws(r)/dr]. Because of the derivative structure, wv(r) has a smaller

root mean square radius than ws(r). Therefore, a natural condition requires that the interaction
for this state takes place inside the bound state volume of the density w2

s(r). This leads to the
geometrical boundary condition

|V v3g(r)| ≃ c w2
s(r) . (2.17)

The conditions (2.15) and (2.17) can be satisfied by a boson wave function of the scalar state of the
form

ws(r) = wso exp{−(r/b)κ} , (2.18)

where wso is fixed by the density normalization 2π
∫
rdr w2

s(r) = 1. This may be the simplest radial
form with slope and shape parameters b and κ, which have to be determined from basic constraints.
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Concerning the potentials V2g(r) and V3g(r), V
s
3g(r) gives rise to binding of the scalar state, whereas

V v3g(r) contributes only to the vector state. Differently, V2g(r) contributes to scalar and vector states
in the ratio 1:3, yielding V s2g(r) =

1
4
V2g(r) and V

v
2g(r) =

3
4
V2g(r).

Binding energies have been calculated by use of the virial theorem (in radial form) Engf =

4π [
∫
r2dr ψ2(r)Vng(r) − 1

2

∫
r3dr ψ2(r) d

dr
Vng(r)], where the fermion wave functions ψ(r) are

normalized by 4π
∫
r2dr ψ2(r) = 1. In addition, V3g(r) can be interpreted as ”bound state” potential

of bosons. The corresponding energies Eg have been calculated by Eg = 2π [
∫
rdr w2(r)vv(r) −

1
2

∫
r2dr w2(r) d

dr
vv(r)]. The masses (due to binding) are defined by the sum of absolute binding

energiesMs,v = |Es,v2g |+ |Es,v3g |, and the total mass of the system is given byMtot =Ms,v+m1+m2,
where m1 and m2 are the participating fermion masses.

As discussed above, momentum conservation requires that the average fermion momentum of both
states is counterbalanced by the momentum of bosons

< q2g >
1/2 + < q2f >

1/2= 0 . (2.19)

The average momentum squares are used in the most natural form by using normalizations for
bosons < q0g >=

∫
qdq V3g(q) and < q0f >=

∫
q2dq ψ(q)V3g(q) for fermions. This leads to

< q2g >=
∫
q3dq V3g(q)/ < q0g > and < q2f >=

∫
q4dq ψ(q)V3g(q)/ < q0f >. The Fourier

transformed wave functions and potentials are given by ψ(q) = 4π
∫
r2dr ψ(r)jo(qr) and V3g(q) =

4π
∫
r2dr V3g(r)jo(qr), respectively. This condition should be valid for both scalar and vector states.

Another condition can be derived from the structure of the potential V2g(r), which may be written
in a different form (this can be seen from dimensional arguments)

V2g(r) =
α2(Ms/2) < r2ws

>

2

(d2ws(r)
dr2

+
2

r

dws(r)

dr

) 1

ws(r)
. (2.20)

Dividing both potentials (2.11) and (2.20) leads to a mass-radius constraint

Rat2g =
(~c)2

m̃(Ms/2) < r2ws
>

= 1 . (2.21)

This condition is very powerful and relates all parameters of a system. However, it can also be used
to relate different systems.

Finally, for a coupling to the vacuum (Eo = 0) energy-momentum conservation2 should be respected,
which requires that the average momenta are compensated by the corresponding binding energies.
Since there are separate potentials for fermions and bosons, this gives rise to four additional
conditions. For bosons this yields

< q2g >
1/2 +Eg = 0 , (2.22)

whereas for fermions one obtains

< q2f >
1/2 −x Mf = 0 , (2.23)

where x Mf =
√

2m̃Mf takes into account mass parameter and fermion binding energy in V2g(r)
and V3g(r). For the vector state < q2f >v is given by a similar expression as < q2f >s but with
Fourier transformed wave functions and potentials given by ψv(q) = 4π

∫
r2dr ψv(r)j

2
1 (qr) and

V v3g(q) = 4π
∫
r2dr V v3g(r)j

2
1 (qr), respectively.

2energy-momentum conservation is also required from relativistic kinematics.
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3 Bound States of Elementary Fermions (Hadrons)

First, an application of the present formalism is discussed for a fermion-antifermion system composed
of elementary fermions (quantons), which are massless. In this case one can require further that
the mass parameter m̃ is half of the generated bound state mass

m̃ =
1

2
Ms =

1

2
(|Es2g|+ |Es3g|) . (3.1)

By the different boundary conditions (2.14), (2.17), (2.19), (2.21) - (2.23) and (3.1) the slope and
shape parameters b and κ as well as the coupling constant α are tightly related to the binding
energies (or masses). Solutions have been found, in which all boundary conditions are fulfilled;
however, due to the mass-radius ambiguity in eq. (2.21) several parameter choices are possible.
One solution is obtained with shape parameter κ = 1.35, coupling constant α = 2.14 and slope
parameter b = 0.572, which gives rise to a mass of the lowest state of 0.78 GeV, corresponding to
the mass of the ω(780) meson.

Resulting distributions of scalar density and potentials are shown in Fig. 2. In the upper part the
potential V2g(r) is given, which has a linearly rising form at larger radii. Importantly, the very
special radial dependence of V2g(r) shows the same characteristics as the empirical ”confinement”
potential needed in hadron potential models [3].
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Fig. 2. Radial dependence of a self-consistent solution with < r2ws
>1/2 = 0.51 fm (ω

meson). Upper part: Confinement potential V2g(r). Second part: Boson density w2
s(r)

(dot-dashed line) and boson-exchange potentials |V s,v3g (r)| given by dashed and solid

lines, respectively. Lower part: Fourier transformed boson density w2
s(q) and

potentials V s,v3g (q)
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In the second part of Fig. 2 the potentials V s,v3g (r) are given together with the boson density w2
s(r).

This shows that the geometrical matching condition (2.17) is fulfilled. The Fourier transformed
boson density and potentials are shown in the lower part of fig. 2, indicating very similar features
of the system in r- and q-space, as expected. The average width of the momentum distribution of
about 1 GeV is significantly smaller than the mass difference between scalar and vector states (see
table 1), implying that in the case of hadrons a mixing of both states is small. Results for these
solutions are given in Table 1. The obtained root mean square radius is in rather good agreement
with the corresponding hadron radius [4].

In Table 2 the corresponding momenta and binding energies are given. The errors in the momenta
< q2g,f >1/2 are mainly due to spacing and cut-off in radius and momentum, which have been
estimated by changing the momentum cut-off qcut by ±10 % from a value of about 7 times
< q2g >

1/2
s . The resulting boson and fermion momenta < q2g >1/2 and < q2f >1/2 are equal

within the estimated errors, as required from condition (2.19). Further, both energy-momentum
conditions (2.22) and (2.23) are correctly fulfilled. Since there are two states, in addition to the
mass-radius constraint (2.21) six conditions had to be fulfilled.

Table 1. Solutions for different fermion-antifermion systems with κ = 1.35 and
α = 2.14. Hadron radius Rhad taken from ref. [4], covalent radius from ref. [5]

binding of massless fermions (mesons) - all quantities in GeV or fm

system b Ms Mv Mexp < r2ψs
>1/2 Rhad

ω 5.72 10−1 0.78 3.66 0.78 0.65 0.72

binding of massive fermions (atoms) - all quantities in eV or pm

system b Ef (1s) Ef (2s) R 1s
1/2 R2s

1/2 RBohr Rcov
p− e− 115 -13.6 -3.4 34 59 53 31±5
e+ − e− 230 -6.8 -1.7 68 118 106

Table 2. Boson and fermion momenta and the corresponding binding energies and
masses

binding of massless fermions (mesons) - all quantities in GeV

system s < q2g >
1/2 Eg < q2f >

1/2 < q2f >
1/2
s,v xMf

ω 0 0.79± 0.02 -0.80 0.76±0.04 0.76±0.04 0.78
1 1.18± 0.07 -1.20 1.33±0.14 3.7±0.14 3.66

binding of massive fermions (atoms) - all quantities in keV

system < q2g >
1/2 Eg < q2f >

1/2 xMf

p− e−, (2s) 3.9± 0.2 −4.0 3.8± 0.3 3.9
p− e−, (1s) 6.0± 0.5 −6.3 6.6± 0.8 6.3

e+ − e−, (2s) 2.0± 0.1 −2.0 1.9± 0.2 2.0
e+ − e−, (1s) 3.0± 0.2 −3.2 3.3± 0.4 3.2

4 Bound States of Atoms

Bound state solutions composed of hadrons and leptons leading to p − e− and e+ − e− bound
states have been studied also. For these cases the mass parameter m̃ is the reduced mass m̃ =
m1m2/(m1 +m2), where mi are the masses of the participating particles. A good description of
these systems is obtained by assuming the same values of κ and α as needed for hadrons.

The radial properties of the p− e− system are shown in fig. 3. A similar picture is obtained as for
hadronic solutions, with a characteristic linearly rising form of V2g(r) at larger radii (which may
be called here stabilizing potential). Further, the boson density and potentials in r- and q-space,
w2
s(r, q) and V

s,v
3g (r, q), show that relation (2.17) is fulfilled.
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Fig. 3. Radial dependence of a p− e− bound state solution with < r2ws
>1/2 = 100 pm.

Upper part: Stabilizing potential V2g(r). Middle part: Boson density w2
s(r)

(dot-dashed line) and boson-exchange potentials |V s,v3g (r)| given by dashed and solid

lines, respectively. Lower part: Fourier transformed boson density w2
s(q) and

potentials V3g(q)

However, in the Fourier transformed density and potentials the momentum distribution of a few keV
is quite comparable to the difference in average momentum between both states (this is different
from hadrons) and indicates an appreciable mixing between scalar and vector states. Using binding
energies E(2s) = (1−x) Es+x Ev and E(1s) = (1−x) Ev −x Es with mixing parameter x ∼ 0.2,
the known energies E(1s) = -13.6 eV and E(2s) = -3.4 eV are well described. The results are given
in the lower part of table 1. The resulting root mean square radii < r2ws,v

>1/2 for the hydrogen
atom are 101 and 54 pm for the 2s and 1s state, respectively, with estimated uncertainties of less
than 10 pm. This leads to radii at half maximum R1/2 in reasonable agreement with the covariant
radius from ref. [5]. For the e+ − e− bound system the slope parameter b is a factor of 2 larger,
giving rise to root mean square radii of 202 and 108 pm for the 2s and 1s state, respectively.

Inspecting the extracted boson and fermion momenta and energies, the results are given in the
lower part of table 2. Different from the case of hadrons, for the vector states also Fourier
transformed wave functions and potentials of the form ψv(q) = 4π

∫
r2dr ψv(r)jo(qr) and V

v
3g(q) =

4π
∫
r2dr V v3g(r)jo(qr) are needed. This may be due to the fact that the wave functions and

interactions vv(r) are not localized as in hadrons. We see in table 2 that fermion and boson
momentum matching is fulfilled in the hydrogen and positronium atom, further that energy-
momentum conservation is fulfilled in all cases.
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5 Discussion

These results show astonishing features: In a theory, in which only three parameters (κ, b and α)
could be adjusted, experimental data of very different systems are well described and further in total
about ten constraints had to be fulfilled. This is possible only in a unique theory, in which many
quantities are interrelated. In particular, the special form of V2g(r) gives rise to the mass-radius
constraint (2.21), which has been checked for hadrons and atoms with binding energies different by
more than eight orders of magnitude. Further, the treatment of bosons with only one potential is
rather different from that of fermions with two potentials V2g(r) and V3g(r), which have to match
geometric properties, which do not depend on the potential V2g(r). Therefore, a matching of boson
and fermion properties are possible only, if all definitions are correct. This cannot be taken for
granted, since the densities, momenta as well as mass could be defined differently; further, Eo could
be assumed different from zero. However, the present definitions appear to be the most simple,
natural and logic ones.

So far an explicit bound state description of particles, as described here, has not been found. For
atoms bound state energies are well described in Bohr’s model of the atom [6, 7] and in the Coulomb
potential, an effective potential of fermions only. However, this potential does not allow to extract
radial properties of atoms.

Hadrons belong to the domain of the strong interaction, for which quantum chromodynamics (QCD)
has been developed, a first order quantum field theory including color, see e.g. [8]. QCD is an
effective theory with external parameters adjusted to experimental data, six masses of elementary
fermions (quarks), coupling constant and coupling parameters to noncolored fields. Phenomenologi-
cal potential models have been used to describe hadron bound states, see ref. [3], using quark masses
consistent with those extracted from QCD together with an empirical ”confinement” potential,
which has been attributed to color (see also the discussion of the confinement problem in lattice
QCD, ref. [9]). However, it is quite surprising that the confinement potential has a characteristics
very similar to V2g(r) (which raises strong doubts that it could be related to color). Because of the
close similarity of this potential in both models, in a preliminary version of the present formalism [10]
the quark masses could be identified with eigenvalues in the potential V3g(r). This may indicate
that in a fundamental theory quarks can be interpreted as effective fermions with masses given by
eigenvalues in V3g(r).

6 Conclusion

Starting from quantum field theory a solution of the free bound state problem for microscopic
systems has been found, which exhibits severe boundary conditions related to momentum matching,
geometry and energy-momentum conservation. In this framework a consistent description of hadro-
nic and atomic bound states is obtained, in which the large differences in mass and radius between
these systems are well understood. With only three adjustable parameters and a total of about 10
constraints all definitions and results are strongly interwoven, revealing a well defined mathematical
structure and most likely the only closed theory, which could be verified in so much detail. This
may not be surprising, since free particle bound states could be the most fundamental objects of
nature.
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