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In this work, we propose a biquaternionic reformulation of a fractional monochromatic Maxwell system. Additionally, some
examples are given to illustrate how the quaternionic fractional approach emerges in linear hydrodynamics and elasticity.

1. Introduction

The past few decades have witnessed a surge of interest in
research on the theory of the Maxwell system. A technique
to study the Maxwell system is to reduce it to the equivalent
Helmholtz equation. In a series of recent papers, diverse
applications of the Maxwell system theory have been studied
(see [1–3] for more details).

The Dirac equation is an important one in mathematical
physics used to represent theMaxwell system through several
ways, which has attracted the attention of physicists and
engineers (see [4]).

A new approach for the study of the Maxwell system by
using the quaternionic displaced Dirac operator, rather than
working directly with the Helmholtz equation, appeared
recently.

The quaternionic analysis gives a tool of wider applicabil-
ity for the study of electromagnetic problems. In particular, a
quaternionic hyperholomorphic approach to monochro-
matic solutions of the Maxwell system is established in [5, 6].

The fractional calculus goes back to Leibniz, Liouville,
Grunwald, Letnikov, and Riemann. There are many interest-
ing books on this topic as well as in fractional differential
equations (see, e.g., [7–12]).

Nowadays, fractional calculus is a progressive research
area [13, 14]. Among all the subjects, we mention the treat-

ment of fractional differential equations regarding the mathe-
matical methods of their solutions and their applications in
physics, chemistry, engineering, optics, and quantummechan-
ics. For more details, we refer the reader to [9–12, 15–17].

The fractional derivative operators are nonlocal, and this
property is very important because it allows modeling the
dynamic of many complex processes in applied sciences
and engineering (see [18, 19]). For example, the fractional
nonlocal Maxwell system and the corresponding fractional
wave equations are considered in [20–22].

Recently, Ferreira and Vieira [23] proposed a fractional
Laplace and Dirac operator in 3-dimensional space using
Caputo derivatives with different orders for each direction.
Previous approaches, but using Riemann-Liouville deriva-
tives, can be found in [24, 25].

The main goal of this paper is to describe the very close
connection between the 3-parameter quaternionic displaced
fractional Dirac operator using Caputo derivatives and a
fractional monochromatic Maxwell system.

After this brief introduction, let us give a description of
the sections of this paper. Section 2 contains some basic
and necessary facts about fractional calculus, fractional vec-
tor calculus, and the connections between quaternionic anal-
ysis and fractional calculus. In Section 3, we present some
examples of fractional systems in physics. Finally, Section 4
is devoted to the study of a fractional monochromatic
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Maxwell system and summarizes the main achievements of
this study.

2. Preliminaries

In this section, we introduce the fractional derivatives and
integrals necessary for our purpose and review some stan-
dard facts on fractional vector calculus and basic definitions
of quaternionic analysis.

2.1. Fractional Derivatives and Integrals. Definitions and
results of fractional calculus are established in this subsection
(see [8, 10, 11]).

Definition 1 (see [8]). Let a real-valued function f ðxÞ ∈ L1
½a, b�. The left Riemann-Liouville fractional integral of order
α1 > 0 is given by

aI
α1
x fð Þ xð Þ≔ 1

Γ α1ð Þ
ðx
a

f τð Þ
x − τð Þ1−α1 dτ, x > α: ð1Þ

Definition 2 (see [8]). The left Caputo fractional derivative of
order α1 > 0 for f ðxÞ ∈ AC1½a, b� is written as

C
a D

α1
x f

� �
xð Þ≔ 1

Γ 1 − α1ð Þ
ðx
a

f ′ τð Þ
x − τð Þα1 dτ, 0 < α1 < 1: ð2Þ

Here and subsequently, AC1½a, b� denotes the class of
continuously differentiable functions f which are absolutely
continuous on ½a, b�.

It is easily seen that

C
a D

α1
x f

� �
xð Þ = aI

1−α1
x f ′

� �
xð Þ: ð3Þ

Unfortunately, in general, the semigroup property for the
composition of Caputo fractional derivatives is not true.
Conditions under which the law of exponents holds are
established in the next theorem, which follows the main ideas
proposed in [10].

Theorem 3. Let α1, α2 ∈ ð0, 1� such that α1 + α2 > 1 and f ∈
C2½a, b�. Then,

C
aD

α1
x

C
a D

α2
x f

� �
xð Þ = C

a D
α1+α2
x f

� �
xð Þ, ð4Þ

holds if the function f satisfies the condition

f ′ að Þ = 0: ð5Þ

Proof. Applying (3) yields

C
aD

α1
x

C
a D

α2
x f

� �
xð Þ = aI

1−α1
x

C
a D

α2
x f

� �
′

� �
xð Þ: ð6Þ

From [10] (p. 81) and (5), it follows that

C
a D

α2
x f

� �
′ xð Þ = C

a D
1+α2
x f

� �
xð Þ: ð7Þ

Consequently,

C
a D

α1
x

C
a D

α2
x f

� �
xð Þ = aI

1−α1
x

C
a D

α2
x f

� �
′

� �
xð Þ: ð8Þ

But 1 + α2 < 2, then,

C
aD

α1
x

C
a D

α2
x f

� �
xð Þ = aI

1−α1
x aI

2− 1+α2ð Þ
x f ″

� �
xð Þ

= aI
1−α1
x aI

1−α2
x f ″

� �
xð Þ

= aI
2− α1+α2ð Þ
x f ″

� �
xð Þ

= C
a D

α1+α2
x f

� �
xð Þ:

ð9Þ

2.2. Elements of Quaternionic Functions. We follow Krav-
chenko [6] in asserting that “The whole building which the
equations of mathematical physics inhabit can be erected
on the foundations of quaternionic analysis, and this possi-
bility represents some interest due to the lightness and trans-
parency especially of the highest floors of that new building
as well as due to high speed horizontal (apart from the verti-
cal) movement allowing an extremely valuable communica-
tion between its different parts. Nevertheless, the current
major interest may be the tools of quaternionic analysis
which permit results to be obtained where other more tradi-
tional methods apparently fail.”

Let ℍðℝÞ be the skew field of real quaternions, and
let e0 = 1, e1, e2, e3 be the quaternion units that fulfill the
condition

emen + enem = −2δmn,
 m, n = 1, 2, 3, e1e2 = e3, e2e3 = e1, e3e1 = e2:

ð10Þ

Let q = q0 + q! =∑3
n=0 qnen, where q0 ≕ ScðqÞ is called

the scalar part and q!≕V ecðqÞ is called the vector part
of the quaternion q. The conjugate element �q is given
by �q = q0 − q!. If ScðqÞ = 0, then q = q! is called a purely vecto-

rial quaternion and it is identified with a vector q! = ðq1, q2,
q3Þ from ℝ3.

The multiplication of two quaternions p, q can be rewrit-
ten in vector terms:

pq = p0q0 − p
! · q! + p0 q

! + q0 p
! + p

! × q!, ð11Þ

where p
! · q! and p

! × q! are the scalar and the usual cross
product in ℝ3, respectively.

An ℍðℝÞ-valued function U defined in Ω ⊂ℝ3 has the

representations U =U0 +U
!
=∑3

n=0Unen with Un real valued.
Properties such as continuity or differentiability have to be
understood component-wise.

Let us denote by ℍðℂÞ the set of quaternions with com-
plex components instead of real (complex quaternions).

If q ∈ℍðℂÞ, then q = Re q + i Im q, where i is the com-
plex imaginary unit and Re q =∑3

n=0 Re qnen and Im q =
∑3

n=0 Im qnen belong to ℍðℝÞ.
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The following first-order partial differential operator is
called the Dirac operator:

D≔ 〠
3

n=1
en∂

1
xn
, ð12Þ

where ∂1τ denotes the partial derivative with respect to τ.
Because −DD = Δ, Laplacian in ℝ3, any function which

belongs to ker D is also harmonic.
The Helmholtz operator Δ + κ2 (κ ∈ℂ) can be factor-

ized as

− D − κð Þ D + κð Þ = Δ + κ2, ð13Þ

as will be clear later; physically, κ represents the wave number.
For an ℍðℂÞ-valued function U , the displacements of

D are denoted by

DκU ≔DU ∓ κU = 0: ð14Þ

The interested reader is referred to [5, 6] for further
information.

2.3. Fractional Vector Operations. In past decades, there has
been considerable effort in the literature to study boundary
problems of pure mathematics and mathematical physics
for domains with highly irregular boundaries like nonrectifi-
able, finite perimeter, fractals, and flat chains (see, for instance,
[26] and the references given there).

In 1992, Harrison and Norton [27] presented an
approach to the divergence theorem for domains with
boundaries of a noninteger box dimension. One of the
methods they employed was the technique introduced by
Whitney in [28], of decomposition of the domain into cubes
and extension of functions defined on a closed set to func-
tions defined on the whole of ℝ3 (for details in the construc-
tion of the Whitney decomposition, we refer to [29]). These
techniques were also employed by [30] where an example
of uniform domains is given by an open ball minus the cen-
ters of Whitney cubes.

Let W ≔ fx! = ðx1, x2, x3Þ: a ≤ x1 ≤ b, a ≤ x2 ≤ b, a ≤ x3 ≤
bg be a cube of ℝ3.

The fractional Nabla operator in coordinates ðx1, x2, x3Þ
and the quaternionic units ðe1, e2, e3Þ are written as

∇α
!

W ≔ e1
CD

1+α1ð Þ/2
W x1½ � + e2

CD
1+α2ð Þ/2
W x2½ � + e3

CD
1+α3ð Þ/2
W x3½ �,

ð15Þ

where CDð1+αnÞ/2
W ½xn� = C

a D
ð1+αnÞ/2
xn

ðxnÞ denotes the left Caputo
fractional derivatives with respect to coordinates xn. Here
and subsequently, α

!
stands for the vector ðα1, α2, α3Þ and

0 < αn ≤ 1, n = 1, 2, 3.
Following the ideas of [20], we may define the fractional

differential operators over cubes W in the quaternionic
context.

Let U : W →ℍðℝÞ such that U0,Un ∈ AC1½W�, where
AC1½W� denotes the class of functions such that its respective
restrictions to each of the coordinate axes belong to AC1½a, b�.

(1) If U0 =U0ðx!Þ, we define its fractional gradient as

Gradα
!

WU0 ≔∇α
!

WU0 = e1
CD

1+α1ð Þ/2
W x1½ � +U0

+ e2
CD

1+α2ð Þ/2
W x2½ �U0 + e3

CD
1+α3ð Þ/2
W x3½ �U0

ð16Þ

(2) If U
!
=U

!ðx!Þ, then we define its fractional divergence
by

Divα
!

WU
!
≔∇α

!

W ⋅U
!
= CD

1+α1ð Þ/2
W x1½ �U1

+ CD
1+α2ð Þ/2
W x2½ �U2 + CD

1+α3ð Þ/2
W x3½ �U3

ð17Þ

(3) The fractional curl operator is defined by

Curlα
!

WU
!
≔∇α

!
W ×U

!
= e1

CD
1+α2ð Þ/2
W x2½ �U3 −

CD
1+α3ð Þ/2
W x3½ �U2

� �
+ e2

CD
1+α3ð Þ/2
W x3½ �U1 −

CD
1+α1ð Þ/2
W x1½ �U3

� �
+ e3

CD
1+α2ð Þ/2
W x1½ �U2 −

CD
1+α3ð Þ/2
W x2½ �U1

� �
ð18Þ

Note that these fractional differential operators are non-
local and depend on the W cube.

The following relation for fractional differential vector
operations is easily adapted from [20].

Divα
!

W Curlα
!

WU
!� �

= 0: ð19Þ

A definition of the 3-parameter fractional Laplace and
Dirac operators using left Caputo derivatives can be found
in [23].

CΔ
α
!

W ≔ CD
1+α1
W x1½ � + CD

1+α2
W x2½ � + CD

1+α3
W x3½ �,

CD
α
!

W ≔ e1
CD

1+α1ð Þ/2
W x1½ � + e2

CD
1+α2ð Þ/2
W x2½ � + e3

CD
1+α3ð Þ/2
W :

ð20Þ

The fractional Dirac operator CD
α
!

W factorizes the frac-

tional Laplace operator CΔ
α
!

W for any ℍðℂÞ-valued function
U = Re U + i Im U , whenever the components of the func-
tions Re U and Im U (its respective restrictions to each of
the coordinate axes) satisfy the sufficient conditions pre-
sented in Theorem 3. As a matter of fact, for such functions,
we can apply (4) which together with the multiplication rules
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of the quaternion algebra and based upon ideas found in
Section 4 of [23] gives

−CD
α
!

W
CD

α
!

WU
� �

= CΔ
α
!

WU : ð21Þ

We can now state (paraphrasing the Dirac operator
case) the fact that the solution of the fractional Dirac
operator is a fractional harmonic.

By straightforward calculation, we have

CD
α
!

WU = −Divα
!

WU
!
+ Gradα

!

WU0 + Curlα
!

WU
!
: ð22Þ

3. Fractional Physical Systems

In general, physical models can be formulated using the
fractional derivatives, where the kernels are interpreted as
power-law densities of states, and the fractional order of the
derivative corresponds to the physical dimensions of the
material [20, 21]. Moreover, the nonlocality in time and
space can be found in phenomena such as the electromagne-
tism [22] and the diffusion [31].

In this section, we illustrate some examples where the
quaternionic fractional approach emerges in linear hydrody-
namics and elasticity. These fractional physical systems are
motivated by [32]; however, the authors did not find in the
literature the use of the quaternionic fractional approach to
formulate such systems.

Let a vector field Φ
!
=Φ

!ðx!Þ and a scalar field Ψ0 =Ψ0ðx!Þ
related by

∇α
!

WΨ0 + Curlα
!

WΦ
!
+ B

!
×Φ

!� �
+Ψ0A

!
= 0,

Divα
!

WΦ
!
+ A

!
⋅Φ
!
= 0,

ð23Þ

where A
!
, B
!

are constant real-valued vectors and x! is the
position vector.

For A
!
= 0, (23) is the generalized Moisil-Teodorescu

system (see, for instance, [33]).

Example 1 (generalized Moisil-Teodorescu system).

Curlα
!

WΦ
!
+ B

!
×Φ

!� �
= −∇α

!

WΨ0, Divα
!

WΦ
!
= 0: ð24Þ

Note that for B
!
= 0, (24) is theMoisil-Teodorescu system,

whereas for Ψ0 = 0 and B
!
= 0, (24) simplifies to the classical

potential flow equations (see, for instance, [32, 34, 35]).

Example 2 (Moisil-Teodorescu system).

Curlα
!

WΦ
!
+ ∇α

!

WΨ0 = 0,

Divα
!
WΦ

!
= 0:

8<
: ð25Þ

Example 3 (ideal fluid). The velocity fieldΘ
!
of an ideal fluid is

irrotational and incompressible (solenoidal), i.e.,

Curlα
!

WΘ
!
= 0,

Divα
!
WΘ

!
= 0,

ð26Þ

which corresponds to (24) with Φ
!
=Θ

!
, Ψ0 ≡ 0, and B

!
= 0.

Example 4 (Stokes flows). Under the assumption of negligible
inertial and thermal effects, the time-independent velocity

field Θ
!

of a viscous incompressible fluid is governed by the
Stokes equations

μ0
CΔ

α
!

WΘ
!
= ∇α

!

WP0,

Divα
!
WΘ

!
= 0,

ð27Þ

where P0 is the pressure in the fluid, μ0 is the shear viscosity,
and

CΔ
α
!

WΘ
!
= ∇α

!

WDivα
!

WΘ
!
− Curlα

!

W Curlα
!

WΘ
!� �

: ð28Þ

The equation (27) implies that the vorticity Λ
!
= Curlα

!

WΘ
!

and pressure P0 are related by

μ0Curlα
!

WΛ
!
= −∇α

!

WP0,

Divα
!

WΛ
!
= 0,

ð29Þ

which corresponds to (24) withΨ0 = P0, Φ
!
= μ0Λ

!
, and B

!
= 0.

Example 5 (Oseen flows). Suppose a solid body translates

with constant velocity V
!

in a quiescent viscous incompress-
ible fluid. If the Reynolds number is sufficiently small, the

time-independent velocity field Θ
!

with partially accounted
inertial effects can be described by the Oseen equations

μ0
CΔ

α
!

WΘ
!
+ ρ0 V

!
⋅ ∇α

!

W

� �
Θ
!
= ∇α

!

WP0,

Divα
!

WΘ
!
= 0,

ð30Þ

where P0 is the pressure and μ0 and ρ0 are the fluid shear

viscosity and density, respectively. Let V
!
·Λ
!
= 0 with Λ

!
=

Curlα
!

WΘ
!
. Then, (30) can be recast into two equivalent forms:

Curlα
!

W μ0Λ
!
+ ρ0 V

!
×Θ

!� �h i
= −∇α

!

WP0, Divα
!

W μ0Λ
!
+ ρ0 V

!
×Θ

!� �h i
= 0,

ð31Þ
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μ0Curlα
!

WΛ
!
+ ρ0 V

!
×Λ

!� �
= −∇α

!

W P0 − ρ0 V
!
·Θ
!� �h i

, Divα
!

WΛ
!
= 0,

ð32Þ

which are both particular cases of (24): Ψ0 = P0, Φ
!
= μ0Λ

!
+

ρ0ðV
!
×Θ

!Þ, and B
!
= 0 in (31) and Ψ0 = P0 − ρ0ðV

!
·Θ
!Þ, Φ! =

μ0Λ
!
, and B

!
= ρ0V

!
/μ0 in (32).

Example 6 (fractional Lamé-Navier system). A 3-dimensional

field U
!

in a homogeneous isotropic linear elastic material
without volume forces is described by the Lamé-Navier
system:

Lλ,μU
!
≔ μΔU

!
+ μ + λð Þ grad div U

!� �
= 0, ð33Þ

where μ > 0 and λ > −2/3μ are the Lamé coefficients (see
[36] for more details).

The fractional calculus can be used to establish a frac-
tional generalization of nonlocal elasticity in two forms: the
fractional gradient elasticity theory (weak nonlocality) and
the fractional integral elasticity theory (strong nonlocality)
(see [37–39]).

Many applications of fractional calculus amount to
replacing the spatial derivative in an equation with a
derivative of fractional order. So, we can consider a gener-
alization of (33) such that it includes derivatives of the
noninteger order.

Precisely, we will propose the following transformations:

Δ⟶ Δα
!

W , ð34Þ

grad⟶Gradα
!

W , ð35Þ

div⟶Divα
!

W : ð36Þ

Then, we get the fractional Lamé-Navier system associ-
ated with the transformations (34), (35), and (36) as follows:

ℒ α
!

λ,μU
!
≔ μCΔ

α
!

WU
!
+ μ + λð ÞGradα

!

W Divα
!

WU
!� �

= 0: ð37Þ

Combining (19) with (22) yields

CD
α
!

W

� �2
U
!
= −Gradα

!

W Divα
!

WU
!� �

+ Curlα
!

W Curlα
!

WU
!� �

,

CD
α
!

WU
!CD

α
!

W = −Gradα
!

W Divα
!

WU
!� �

− Curlα
!

W Curlα
!

WU
!� �

,

ð38Þ

and hence we have

Gradα
!

WDivα
!

WU
!
= −

1
2

CD
α
!

W

� �2
U
!
+ CD

α
!

WU
!CD

α
!

W

" #
: ð39Þ

Consequently, the fractional Lamé-Navier system (37)
can be rewritten in the form

μ + λð Þ
2

CD
α
!

WU
!CD

α
!

W + μ + μ + λ

2

� �
CD

α
!

W

� �2
U
!
= 0: ð40Þ

Let us denote γ = ðμ + λÞ/2 and β = ð3μ + λÞ/2 and intro-
duce the operator

ℒ ∗,α!
λ,μU

!
≔ γCD

α
!

WU
!CD

α
!

W + β CD
α
!

W

� �2
U
!
: ð41Þ

Having in mind the conditions relating λ, μ in (33), it is
easily seen that γ ≠ 0 and β ≠ 0.

Remark 4. Note that the operational equation involving (41)
is equivalent to the fractional Lamé-Navier system (37).

Remark 5. Observe that the term CD
α
!

WU
!CD

α
!

W in (41) is a
generalization of the sandwich equation. Solutions of the

sandwich equation DU
!
D = 0 are known as inframonogenic

functions (see [36] for more details). In this way, the kernel

of CD
α
!

WU
!CD

α
!

W could be understood as the set of fractional
inframonogenic functions.

4. Fractional Monochromatic Maxwell System

The behavior of electric fields ðE,DÞ, magnetic fields ðB,HÞ,
charge density ρðt, x!Þ, and current density jðt, x!Þ is described
by theMaxwell system (see [2] and the references given there).

The relations between electric fields ðE,DÞ for the
medium can be realized by the convolution

D t, x!
� �

= ε0

ð+∞
−∞

ε x!, ′
x!

� �
E t, ′

x!
� �

d
′
x!, ð42Þ

where ε0 is the permittivity of free space. Homogeneity in

space gives εðx!, ′
x!Þ = εðx! −

′
x!Þ. A local case accords with

the Dirac delta-function permittivity εðx!Þ = εδðx!Þ and (42)
yields Dðt, x!Þ = ε0εEðt, x!Þ.

Analogously, we have a nonlocal equation for the mag-
netic fields ðB,HÞ.
4.1. Fractional Nonlocal Maxwell System. A feasible way of
appearance of the Caputo derivative in the classical electro-
dynamics can be found in [20]. This is mainly included here
to keep the exposition self-contained.

If we have

D t, x1ð Þ =
ð+∞
−∞

ε x1 − x′1
� �

E t, x′1
� �

dx′1, ð43Þ
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then

∂1x1D t, x1ð Þ =
ð+∞
−∞

∂1x1ε x1 − x′1
� �

E t, x′1
� �

dx′1

= −
ð+∞
−∞

∂1x′1ε x1 − x′1
� �

E t, x′1
� �

dx′1:
ð44Þ

The integration by parts now leads to

∂1x1D t, x1ð Þ =
ð+∞
−∞

ε x1 − x′1
� �

∂1x′1E t, x′1
� �

dx′1: ð45Þ

The nonlocal properties of electrodynamics can be con-
sidered as a result of dipole-dipole interactions with a frac-
tional power-law screening that is connected with the
integrodifferentiation of noninteger order (see [40]).

Consider the kernel εðx1 − x′1Þ of (45) in ð0, x1Þ such that

ε x1, x1′
� �

=
e x1 − x1′
� �

, 0 < x1′ < x1,

0, x1′ > x1, x1′ < 0,

8<
: ð46Þ

with the power-like function

e x1 − x′1
� �

= 1
Γ 1 − α1ð Þ

1
x1 − x′1

� �α1
, 0 < α1 < 1: ð47Þ

Then, (45) gives the relation

∂1x1D t, x1ð Þ = C
0D

α1
x1
E t, x1ð Þ, 0 < α1 < 1, ð48Þ

with the Caputo fractional derivatives C
0D

α1
x1
.

Let us apply (17) and (18) to write the corresponding
fractional nonlocal differential Maxwell system as

Divα
!

WE t, x!
� �

= g1ρ t, x!
� �

,

Curlα
!

WE t, x!
� �

= −∂1tB t, x!
� �

,

Divα
!

WB t, x!
� �

= 0,

g2Curlα
!

WB t, x!
� �

= j t, x!
� �

+ g−1
3 ∂1t E t, x!

� �
,

8>>>>>>>>><
>>>>>>>>>:

ð49Þ

where g1, g2, and g3 are constants. We assume that the den-

sities ρðt, x!Þ and jðt, x!Þ, which describe the external sources
of the electromagnetic field, are given.

The main idea behind the use of fractional differentia-
tion, for describing real-world problems, is their abilities to
describe nonlocal distributed effects. For example, a power-
law long-range interaction in the 3-dimensional lattice in
the continuous limit can give a fractional equation (see [41,
42]). In [43], some numerical examples and simulations are
provided to illustrate the use of alternative fractional differ-
ential equations for modeling the electrical circuits.

Also, the methodology used in [43] succeed in the
analysis of electromagnetic transient problems in electrical
systems. Moreover, an empirical model for complex per-
mittivity was incorporated into Maxwell’s equations that
lead to the appearance of fractional order derivatives in
Ampere’s law and the wave equation (see [44]).

The fractional Maxwell system (49) can describe electro-
magnetic fields in media with fractional nonlocal properties,
like in superconductor and semiconductor physics [45, 46]
and in accelerated systems [47].

4.2. Fractional Monochromatic Maxwell System. We will
assume that the electromagnetic characteristics of the medium
do not change in time. If in addition they have the same values
in each point of the cubeW ∈ℝ3, then the mediumwhich fills
the volume is called homogeneous.

A monochromatic electromagnetic field has the follow-
ing form:

E t, x!
� �

= Re E
!

x!
� �

e−iωt
� �

, ð50Þ

B t, x!
� �

= Re B
!

x!
� �

e−iωt
� �

, ð51Þ

where E
!
: W ⟶ℝ3 and B

!
: W ⟶ℝ3, and all depen-

dence on time is contained in the factor e−iωt .

E
!
and B

!
are complex vectors called the complex ampli-

tudes of the electromagnetic field; ω is the frequency of
oscillations.

Substituting (50) and (51) into (49), we obtain the equa-

tions for the complex amplitudes E
!
and B

!
:

Divα
!

WE
!
= g1ρ,

Curlα
!

WE
!
= iωB

!
,

Divα
!

WB
!
= 0,

Curlα
!

WB
!
= iωg−12 g−1

3 E
!
+ g−12 j

!
:

:

8>>>>>>><
>>>>>>>:

ð52Þ

The quantities ρ and j are also assumed to be monochro-

matic ρðx!, tÞ = Re ðρðx!Þe−iωtÞ, jðx!, tÞ = Re ð j!ðx!Þe−iωtÞ.
4.3. Fractional Helmholtz Operator. The following fractional
wave equations can be found in [20]. The wave equations
for electric and magnetic fields in a W cube are obtained
using the fractional nonlocal Maxwell system with j = 0 and
ρ = 0.

1
v2

∂2tB − CΔ
α
!

WB = 0,

1
v2

∂2t E − CΔ
α
!

WE = 0,

8>><
>>: ð53Þ

where ν2 = g2g3.

Substituting (50) and (51) into (53), we obtain that B
!
and

E
!

are also solutions of homogeneous fractional Helmholtz
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equations with respect to the square of the medium wave
number ω/ν.

ω2

v2
B
!
− CΔ

α
!

WB
!
= 0,

ω2

v2
E
!
− CΔ

α
!

WE
!
= 0:

8>><
>>: ð54Þ

The above fractional Helmholtz equations motivate the

introduction of the fractional Helmholtz operator CΔ
α
!

W + κ2

ðκ = ðω/vÞ ∈ℂÞ.
Next, the fractional Helmholtz operator, can be factor-

ized as

− CD
α
!

W − κ

� �
CD

α
!

W + κ

� �
= CΔ

α
!

W + κ2, ð55Þ

which is a corollary of (21).
The formulation of (52) and (54) in terms of the frac-

tional Dirac operator CD
α
!

W = −Divα
!
W + Curlα

!

W allows us to
describe solutions of both systems in terms of displacements
CD

α
!

W ∓ κ.

Remark 6. In view of the factorization (55) of the fractional

Helmholtz operator, we can express the solutions E
!

and B
!

of (54) in terms of the function F
!
= ðCDα

!

W + κÞ½E! + iB
!�. That

function belongs to ker ðCDα
!

W − κÞ and in turn allows us to
reexpress the electric and magnetic components for (52).

Applying the fractional divergence operator to the last
equation in (52) and using (19), we find the relation between

ρ and j
!
:

Divα
!

W j
!
− iωρg1g

−1
3 = 0: ð56Þ

In order to rewrite (52) in quaternionic form, let us
denote the wave number κ≔ ω

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g−12 g−1

3
p

, where the square
root is chosen so that Im κ ≥ 0.

Introduce the following pair of purely vector biquaternio-
nic functions

φ
!≔ −iωg−12 g−13 E

!
+ κB

!
, ð57Þ

ψ
!≔ iωg−12 g−13 E

!
+ κB

!
, ð58Þ

and the notation

CD
α
!

W,κ ≔
CD

α
!

W + κ: ð59Þ

Now, we formulate the main result of this paper, which
consists of a biquaternionic reformulation of a fractional
monochromatic Maxwell system.

Theorem 7. The fractional quaternionic equations

CD
α
!

W,−κφ
! = g−12 Divα

!

W j
!
+ κ j

!� �
, ð60Þ

CD
α
!

W,κψ
! = g−1

2 −Divα
!

W j
!
+ κ j

!� �
, ð61Þ

are equivalent to the fractional Maxwell system (52). Indeed,

φ
!
and ψ

!
are solutions of (60) and (61), respectively, if and only

if E
!
and B

!
are solutions of (52).

Proof. Let E
!
and B

!
solutions of (52), which can be rewritten

as two quaternionic equations

CD
α
!

WE
!
= iωB

!
− g1ρ, ð62Þ

CD
α
!

WB
!
= −iωg−1

2 g−13 E
!
+ g−1

2 j
!
: ð63Þ

Applying CD
α
!

W to φ
!
in (57) and combining (62) with (63)

we get

CD
α
!

Wφ
! = −g−12 g−13 iωCD

α
!

WE
!
+ κCD

α
!

WB
!

= κ2B
!
+ g1g

−1
2 g−13 iωρ − κiωg−12 g−1

3 E
!
+ κg−12 j

!

= κφ
! + g1g

−1
2 g−13 iωρ + κg−12 j

!
:

ð64Þ

Thus, (56) shows that φ
!

satisfies (60). Analogously, we

can assert that ψ
!
in (58) satisfies (61).

On the contrary, suppose that φ
!

and ψ
!

satisfy (60) and
(61), respectively. A trivial verification shows that

CD
α
!

Wφ
! = κφ

! + g1g
−1
2 g−13 iωρ + κg−12 j

!
: ð65Þ

Substituting (57) into (65)

−g−12 g−13 iωCD
α
!

WE
!
+ κCD

α
!

WB
!

= κ2B
!
+ g1g

−1
2 g−13 iωρ − κiωg−1

2 g−13 E
!
+ κg−12 j

!

= i2ω2g−12 g−13 B
!
+ g1g

−1
2 g−13 iωρ − κiωg−12 g−13 E

!
+ κg−12 j

!

= −iωg−1
2 g−13 iωB

!
− g1ρ

� �
+ κ −iωg−1

2 g−13 E
!
+ g−12 j

!� �
:

ð66Þ

From the last equality, we conclude that (62) holds. Sim-

ilar considerations apply to ψ
!
in order to obtain (63).

Separating the vector and scalar parts in (62) and (63),

together with the vectorial nature of φ
!
and ψ

!
, and (22) yields

(52). This completes the proof.

5. Conclusions

The main purpose of this paper was to explore the very close
connection between the 3-parameter quaternionic displaced
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fractional Dirac operator with a fractional monochromatic
Maxwell system using Caputo derivatives. With this aim in
mind, a biquaternionic reformulation of such a system was
studied. Moreover, some examples to illustrate how the
quaternionic fractional approach emerges in linear hydro-
dynamic and elasticity are given. As future works, the for-
mulation of a fractional inframonogenic functions theory
is suggested.
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