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Abstract: Airport traffic flow prediction is a fundamental research topic in the field of air traffic flow
management. Most existing works focus on the single airport traffic flow prediction with temporal
dynamics but fail to consider the influence of the topological airport network. In this paper, a novel
deep learning-based framework, called airport traffic flow prediction network (ATFPNet), is proposed
to capture spatial-temporal dependencies of the historical airport traffic flow (departure and arrival)
for the multiple-step situational (network-level) arrival flow prediction. Firstly, considering the
nature of the airport distribution and the context of air transportation, a special semantic graph built
on the flight schedule is applied to represent the airport network, which is the key to encoding the
situational airport traffic flow into a single representation. Then, the graph convolution operator and
the gated recurrent unit are combined to extract high-level transition patterns of airport traffic flow
in the spatial and temporal dimensions. Finally, a real-world airport traffic flow dataset is applied to
validate the effectiveness of the proposed model, and the experimental results demonstrate that the
ATFPNet outperforms other baselines on different prediction horizons. Specifically, the proposed
method achieves up to 17% MAE improvement compared to baselines. Based on the proposed
approach, efficient traffic planning is expected to be achieved for airport management.

Keywords: airport traffic flow; multiple-step situational prediction; spatial graph convolution; deep
learning; spatial-temporal dependencies

1. Introduction

With the spectacular increase of flights in air transportation, a large number of con-
gestions and flight delays occur due to the limited airport capacity. Compared with the
high cost of extending the airport infrastructure, enhancing the efficiency of the air traffic
flow management (ATFM) at airports is a preferred option for concerned departments
in short-term. As an essential technique in air traffic control (ATC), airport arrival flow
prediction (AAFP) can detect the arrival demand timely, which is the foundation to provide
decision-making on the ATFM. On the one hand, it helps air traffic controllers (ATCOs) to
foresee real-time airspace situations at airports, relieving the workload of the controllers.
On the other hand, it can provide more time to make an efficient flow plan for alleviating
airport traffic congestions in time.

The short-term arrival flow prediction in an ATC system is typically based on the
historical and current airport traffic flow information, including departure flow, arrival
flow, and so forth, to estimate the arrival flow in the near future. With regard to the air
traffic prediction task [1,2], it is commonly agreed that it is subject to the complex spatial–
temporal dependencies of traffic data. Therefore, when forecasting the airport arrival flow,
it is necessary to consider the spatial and temporal dependencies integrally:
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1. Spatial dependencies: the evolution of the airport arrival flow relates to the topological
structure of a given airport network. In air transportation, the flights commute
between airports conforming to a flight schedule overall, which contains the departure
time, flight routes, and arrival time at airports. Therefore, a semantic airport network
can be constructed with this scheduling, which takes airports as nodes, the city-pairs
as edges and the number of scheduled flights between airports as the weight values.
Specifically, as illustrated in Figure 1, the red link represents that there are scheduled
flights that can commute between airports. The wider the link is, the more scheduled
flights it has between both ends. Focusing on the city-pair between Beijing and
Shanghai (ZBAA-ZSSS), both airports have a large number of actual arrival flights,
which demonstrates that more scheduled flights may bring the larger arrival flow,
and validate the effect of the semantic airport network.

2. Temporal dependencies: the airport arrival flow changes in periodicity, trend and close-
ness. As the flight operation is usually arranged by airlines weekly, the airport arrival
flow presents periodical patterns each week. Within one day, the peak hours of the
airport arrival flow usually surge during 12:00–14:00 and 17:00–19:00, and the bottom
mostly appears between 00:00 and 07:00. The closeness means that the arrival flow on
the adjacent time slice often changes smoothly.

Figure 1. A simplified airport network. The top ten city-pairs according to the domestic scheduled
flights are depicted by the wider red lines. The actual airport arrival flow is shown by the bar.
The airport is identified by the four-letter location identifier code.

For years, great efforts have been made to improve the performance of traffic flow
prediction. In terms of prediction methods, the previously published works can generally
be classified into three categories, that is, flight plan-based algorithms, traffic flow model-
driven algorithms and data-driven algorithms. The flight plan-based algorithms achieve air
traffic flow of the airspaces concerned by evaluating the 4-D aircraft trajectories [3] based
on flight plans [4,5]. This method relies heavily on the trajectory prediction (TP) technique,
which is susceptible to uncertainties of the real-time traffic state, such as the weather
condition and the airport facility state. As a result, the flight plan-based approaches failed
to offer sufficient insights into the dynamics of the traffic flow [6]. The flow model-driven
algorithms generally learn the evolution pattern of the traffic flow by some handcrafted
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traffic models. Prior knowledge is required to design the traffic model to forecast future
traffic flow, including the cell transmission model [7], the queuing theory model [8], and the
aggregate flow model [9–11], and so forth. However, the traffic state is influenced by many
factors so that it may be difficult to fully illustrate unsteady air traffic flow by a specific
model. The core idea for data-driven algorithms is to extract informative knowledge by
mining the input dataset. The history average model (HA) [12] is an early representative
method. Recently, there is an increasing interest in applying methods based on Machine
Learning Techniques (MLT) to problems in Air Traffic Management (ATM) [13]. Some
neural network models were proposed to achieve the traffic prediction, including the
artificial neural network (ANN) [14], the long short-term memory (LSTM) [15–17], the gated
recurrent unit (GRU) [18] and the convolutional neural network (CNN) [19,20]. In general,
the LSTM and the GRU models are able to provide a higher performance for time-series
prediction tasks. However, as it fails to consider the spatial dependencies, the structure
of the airport network is not captured in the related AAFP task. To capture the spatial
dependencies of air traffic flow, the CNN model was used to mine the grid-based traffic
flow by dividing the space into grided regions [2]. However, due to the graph nature of
the airport network, it may not be an optimal solution to directly extract the underlying
patterns of the topological structure of the airport network by the CNN.

As deep learning models have been particularly successful in dealing with
speech [21–23], images [24–27], or videos [28], the increasing architectures based on the
graph neural network were proposed to extract informative graph representations for
subsequent tasks. The graph convolutional network (GCN) [29] is a generalized CNN,
which can mine the high-level information in a non-Euclidean space directly. In addition,
some integrated neural networks were also developed to mine the spatial-temporal data ef-
ficiently. The spectral graph Markov network (SGMN) [30] was proposed to approximately
characterize the dynamic change of traffic data. However, the Markov assumption of the
SGMN may limit its performance on the multiple-step prediction tasks.

To solve the aforementioned problems, we first represent the airport network as a
weighted graph based on a flight schedule, generally describing the spatial interactions of
flights between airports. In succession, an airport traffic flow prediction network (ATFPNet),
constructed by the graph convolution operator and the gated recurrent unit, is proposed
to capture the evolution patterns of the airport traffic flow. Specifically, the overall traffic
flow in the airport network can be encoded into a single structure by the specific graph
representation. Thanks to the recurrent mechanism of the ATFPNet cell, the proposed
approach has the ability to predict the multiple-step airport arrival flow in a situational
manner. In addition, a real-world airport traffic flow dataset is constructed to validate
the proposed approach, and the results demonstrate that the proposal outperforms other
baselines, achieving up to 17% MAE improvement. All in all, the main contributions of this
paper are summarized as follows:

1. Considering the air transportation context, a semantic airport network is built up by
the flight schedule, which generally models the flights interactions between airports;

2. In light of the semantic airport network, a deep learning-based ATFPNet framework
is proposed to predict the airport arrival flow in a multiple-step and situational
manner, which is able to consider the spatial-temporal dependencies of airport traffic
flow integrally;

3. The graph convolutional network and gated recurrent unit are combined to construct
the ATFPNet model, which is the key to extracting the high-level transition patterns of
airport traffic flow. Specifically, the spatial dependencies of inter-airports and the time-
varying airport traffic flow sequence can be modeled by the two blocks, respectively;

4. A real-world dataset from the Civil Aviation Administration of China (CAAC) is
applied to evaluate the performance of the proposed approach. Compared to the other
baselines, the experimental results demonstrate that the proposed approach yields
performance superiority for the short-term situational airport arrival flow forecasting.
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The rest of this paper is organized as follows. Implementation details of the proposed
model are introduced in Section 2. In Section 3, we list experimental configurations and
evaluate the experimental results by a real-world airport traffic flow dataset. The discussion
of the experiment is reported in Section 4. We conclude the paper and introduce the future
work in Section 5.

2. Methodologies
2.1. Airport Network Representation

The airport network is defined as an undirected graph G = (V, A, E), where V is a
finite set of nodes, and E is a set of edges. A ∈ RN×N is a weighted adjacent matrix of G,
indicating the proximity between nodes on the network, where N is the number of nodes.
Specifically, considering the operational characteristics of the air traffic, we make statistics
of the scheduled flights between each airport pairs to present the weighted adjacent matrix
A, where Aij =

{
0, aij

}
. The element is 0 if there is no scheduled flight between airports,

and aij denotes the number of the scheduled flights.

2.2. Airport Arrival Flow Prediction Problem

The goal of the airport arrival flow prediction is to simultaneously predict network-
level airport arrival flow by the current and historical airport traffic flow (departure and
arrival). We regard the airport traffic flow as the attribute feature of the node on the
network. The network-level features for multiple time steps can be characterized as an
Equation (1):

Seq(Xn, s) = [Xn, Xn+1, Xn+2, . . . , Xn+s−1] ∈ RS×N×D, (1)

in which Xn ∈ RN×D demonstrates the traffic flow of N given airports at the n-th time
step, s ≤ S is the length of the sequence Seq(·), S represents the length of sum time steps
(the length of all historical time series), and D denotes the dimension of a node feature.
Therefore, the multiple-step situational airport arrival flow prediction can be termed as
learning the mapping function on the premise of the airport network G and the feature
matrix X. Thus, the next t steps AAFP task can be shown in Equation (2):

Seq
(
X′n+s, t

)
= f (G; Seq(Xn, s)), (2)

where the f (·) is a traffic flow prediction model that is usually optimized by data-driven
methods. t is the length of the time series needed to be predicted. Notably, X′ is the
prediction results, which may have different dimensions with the input feature matrix X.

2.3. Airport Traffic Flow Prediction Network

To improve the accuracy of arrival flow prediction on the airport network, an airport
traffic flow prediction network (ATFPNet) is proposed considering the spatial-temporal
dependencies of the input features. The architecture of an ATFPNet cell is visualized
in Figure 2. The left part is an ATFPNet cell with output Yt and input Xt at the t time
instant. ht−1 denotes the hidden state from the previous time step with vector components
ht−1·. The right part represents the components of an ATFPNet cell, which combines
the spatial graph convolution (GC) block and the gated recurrent unit. The GC is a
generalization of a convolution operator in the non-Euclidean space, which aggregates
neighborhood information via a normalized Laplacian matrix without required eigen-
decomposition. Therefore, the GC can process non-Euclidean data (like a graph) directly
at a low computation cost. By stacking multiple convolutional layers, the complex spatial
dependencies can be captured efficiently. For example, a two-layer GC block can be
expressed as Equation (3):

f (X, A) = σ
(

Âσ
(

ÂXW0

)
W1

)
, (3)
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where X denotes the feature matrix and A represents the adjacent matrix. Â is a transfor-
mation of A, where Â = D̃−

1
2 AD̃−

1
2 , and D̃ is a degree matrix describing the number of

edges attached to each node, which can be obtained by D̃ = ∑j Ai,j. The parameters W0
and W1 represent the weighted matrix in the first and second layers, respectively, σ(·) is
the activation function. In this work, the structure of the airport network is represented as
the adjacent matrix A.
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Figure 2. The architecture of an ATFPNet cell.

In traffic prediction, the ability to mine the transition patterns from sequential data
is indispensable for capturing the temporal dependencies. The recurrent neural network
(RNN) is widely used to handle this task and showed the desired performance for different
tasks. However, the RNN block suffers the problem of gradient vanishing and exploding,
which limits the model convergence and the final performance. The LSTM and the GRU
models were proposed to address the above issues by incorporating the gate mechanism
into the RNN. Compared to the LSTM, the GRU is similarly effective with a simpler
architecture [31]. Therefore, the GRU is selected as a basic block to capture temporal
dependencies of the features, as shown below:

µt = σ(Wu[Xt, ht−1] + bu), (4)

rt = σ(Wr[Xt, ht−1] + br), (5)

ct = tanh(Wc[Xt, (rt ∗ ht−1)] + bc) , (6)

ht = ut ∗ ht−1 + (1− ut) ∗ ct, (7)

where the notation ht−1 denotes the output at time instant t− 1, µt and rt are the update
gate, reset gate at time instant t, respectively, W· and b· represent the learnable weights and
deviations in the training process, and ht denotes the output at time instant t. Combining
the GC block with the gated recurrent unit, the inference rules of the ATFPNet are shown
in Equations (8)–(11).

µt = σ(Wu f (A, [Xt, ht−1]) + bu), (8)

rt = σ(Wr f (A, [Xt, ht−1]) + br), (9)

ct = tanh(Wc f (A, [Xt, (rt ∗ ht−1)]) + bc), (10)
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ht = ut ∗ ht−1 + (1− ut) ∗ ct, (11)

where the f (·) represents the graph convolution process and A represents the adjacent
matrix. The other notations in Equations (8)–(11) are the same as those in Equations (4)–(7).
At a given time instant, the dynamic patterns of the airport traffic flow sequence can
be learned by the AFTPNet cell. By unrolling the ATFPNet cells, the proposed model
can capture informative features to predict the arrival flow. The process of ATFPNet for
multiple-step situational prediction is described in Figure 3. Subgraph A is an example that
demonstrates the process of unrolling ATFPNet cells, like that of the GRU cells. Subgraph
B shows that the ATFPNet captures the topological relationship between the neighbors and
adjacent time instants.

Xt-1 Xt Xt+1

Yt-1 Yt Yt+1

ht-1 ht

T

T+1

time
...

Link

Aggregate Neighbour 

Airport Traffic Flow

Multistep Prediction

Surround AirportCenteral Airport

ATFPNet

CELL

ATFPNet

CELL

ATFPNet

CELL

(A) (B)

Figure 3. The process of the ATFPNet for multiple-step situational prediction, which contains the
process of unrolling the ATFPNet cells and the operation of aggregating features of the adjacent
spatial-temporal nodes.

In summary, a dedicated weighted graph is applied to represent the airport network,
considering the air traffic operation context (flight schedule). On the other hand, the GC
block and gated recurrent unit are combined to capture the spatial-temporal dependencies
of features integrally and finally achieve the multiple-step situational AAFP task.

3. Experiments
3.1. Data Description
3.1.1. Airport Traffic Flow Dataset

To validate the proposed ATFPNet framework, the departure and arrival flight data
of 224 civil airports in China from 1 June 2017 to 30 June 2017, is collected as a raw
flight information database for data extraction and analysis. This database involves about
0.21 million pieces of information on domestic flights, which include: (1) flight number:
a code for an airline service consisting of a three-character airline designator and several
digits; (2) aircraft type: a designator with a four-character alphanumeric code defined by
the International Civil Aviation Organization (ICAO); (3) departure and arrival airport:
both designators are described by using the four-letter location identifier such as the Beijing
Capital International Airport is represented as ZBAA; (4) actual departure time and actual
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arrival time: both fields are stored in the Chinese Standard Time (CST) format; (5) status of
flight: a property denotes whether the departure and arrival airport of a flight is in China.
An example of the flight information from a real ATC system in China is listed in Table 1.

Table 1. An example of the flight information.

Flight Number Aircraft
Type

Departure
Airport

Arrival
Airport

Actual Departure
Time

Actual Arrival
Time Status of Flight

CSN6492 A320 ZLLL ZYTX 1 June 2017 20:07 1 June 2017 22:35 domestic
CSN6492 A320 ZWWW ZLLL 1 June 2017 16:47 1 June 2017 18:52 domestic
CSN6495 A319 ZBOW ZWWW 1 June 2017 20:17 1 June 2017 23:06 domestic
CSN6559 A321 ZHCC ZYTX 1 June 2017 16:20 1 June 2017 18:14 domestic

By traversing the flight information records, each airport half-hourly actual departure
and actual arrival aircraft are counted and gathered, forming an airport traffic flow dataset.
To avoid sparsity, the civil airports are ranked according to the handling capacity, and a total
of 60 top busy airports (e.g., ZBAA, ZPPP) are poured into the experimental dataset, which
account for about 75% of the air traffic in China. An example of the dataset is demonstrated
in Table 2, containing the start time, end time, actual departures, and actual arrivals at the
airports every other 30 min.

Table 2. An instance of the airport traffic flow dataset.

Start Time End Time
ZBAA ZGGG

Actual Departures Actual Arrivals Actual Departures Actual Arrivals

9 June 2017 15:30 9 June 2017 16:00 14 8 12 9
9 June 2017 16:00 9 June 2017 16:30 15 11 11 7
9 June 2017 16:30 9 June 2017 17:00 17 13 8 11
9 June 2017 17:00 9 June 2017 17:30 16 12 8 10

For better convergence, the variables in the dataset were mapped into [0, 1] by the
min–max normalization as the following Equation (12):

Xnor =
X− Xmin

Xmax − Xmin
, (12)

where Xnor, X, Xmax and Xmin represent the normalized value, the original value, the maxi-
mum, and the minimum value in the dataset, respectively. Finally, there are 1440 records in
this dataset, spanning from 1 June 2017 to 30 June 2017 with 30 min intervals.

3.1.2. Aiport Network Construction

Considering the air traffic operation context, about 0.27 million scheduled domestic
flights are used to construct the airport network as a weighted graph, which macroscopically
describes the flights interactions on the network. The number of nodes in the airport
network is set to 60, which follows the airport traffic flow dataset. An example of domestic
scheduling is shown in Table 3, which includes the flight number, aircraft type, day of the
week, departure airport, scheduled arrival time, scheduled departure time, arrival airport.
Specifically, the column, day of the week, ranges from 1 to 7 designating Monday to Sunday.
In addition, the formats of other columns are the same as the flight information shown
in Table 1. After traversing every record in the flight schedule, the sum of the scheduled
departure and the arrival aircraft between each city-pair can be obtained. By statistics,
the top ten city-pairs in the scheduling are listed in Table 4, where we can find that the
difference of flights between the inbound and the outbound is small. The average relative
difference is calculated by Equation (13), which is about 0.02%.
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Xrel_di f =
n

∑
i=1

Xout − Xin
Xout

, (13)

where Xrel_di f is the relative difference value for measuring the difference of flights on both
directions in city-pairs, Xout represents the direction from left to right in the city-pair, Xin is
in the inverse direction, and n is the number of city-pairs.

Table 3. An example of a flight schedule.

Flight Number Aircraft
Type

Day of the
Week

Departure
Airport

Scheduled
Departure Time

Scheduled
Arrival Time Arrival Airport

CCA1254 B738 1.3. . . 7 ZWWW 1650 2035 ZBAA
CCA1255 B738 . . . 4. . . ZBAA 755 1005 ZSOF
CCA1255 B738 123.567 ZBAA 820 1020 ZSOF
CCA1256 B738 1234567 ZSOF 1120 1315 ZBAA

Table 4. The top ten city-pairs in the flight schedule in June 2017.

City-Pair Inbound Outbound Difference Relative Difference

ZBAA-ZSSS 947 932 15 0.016
ZSSS-ZGSZ 860 804 56 0.065

ZUUU-ZBAA 831 816 15 0.018
ZBAA-ZGSZ 780 761 19 0.024
ZSSS-ZGGG 692 681 11 0.016

ZBAA-ZGGG 685 682 3 0.004
ZSHC-ZBAA 668 655 13 0.019
ZUUU-ZGSZ 605 577 28 0.046
ZLXY-ZBAA 593 582 11 0.019

ZUUU-ZGGG 591 581 10 0.017

Due to the relatively small difference, the large flights flow in each city-pair can be used
to approximately express the interactions strength of air traffic between airports. Therefore,
we define the airport network as an undirected weighted graph. By Equation (12), the flow
of flights is normalized into [0, 1], which is further regarded as the final weight value of the
edge between nodes on the airport network. The graph presentation of the airport network
is intuitively visualized in Figure 4. The brighter color indicates a large amount of air traffic
according to the flight schedule, and the darker ones are small.

Figure 4. The graph representation of the semantic airport network is built up by the flight schedule.
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3.2. Evaluation Metrics

A total of three metrics are leveraged to evaluate the performance of the proposed
ATFPNet, by measuring the difference between the real traffic information flow Yt and the
prediction flow Ŷt, as shown below:

1. RMSE

RMSE =

√
1
n

n

∑
i=1

(
Yt − Ŷt

)2, (14)

2. MAE

MAE =
1
n

n

∑
i=1

∣∣∣Yt − Ŷt

∣∣∣, (15)

3. ACC

ACC = 1−

∥∥∥Yt − Ŷt

∥∥∥
F

‖Yt‖F
. (16)

The RMSE and the MAE are the root mean square error and the mean absolute error,
respectively. The ACC is used to detect the prediction performance. Specifically, as for the
RMSE and MAE metrics, the smaller the value is, the better the prediction performance is,
while the ACC presents an inverse trend.

3.3. Experiment Configurations
3.3.1. Training Details

In the experiment, we manually set the learning rate to 0.001, the batch size to 64
and the training epoch to 5000. As the airport arrival flow in the next two hours is
preferred to make an ATC decision, the output length is set to 4 with 30-min as the interval.
In addition, considering the long-distance flights in domestic China, the time span of the
input feature sequence is set to 6 hours, namely, most of the O-D pairs in the domestic
flight schedule can be accomplished during this period, and the destination airport arrival
flow can be counted. Therefore, the length of the input time-series is set to 12. As a key
parameter to deep learning models, the number of hidden units is selected by specific
experiments to decide the optimal architecture, which is detailed in Section 3.4.1.

The ATFPNet framework is implemented using Python 3.7, and the deep learning
models are constructed by the Pytorch 1.7.1 framework. The Adam optimizer is employed
to optimize the model parameters during the training procedure. The configurations of
the training server are listed as follows: an AMD Ryzen 2990WX CPU (3.00 GHz, 32 cores),
128 GB RAM, and two GPUs (GEFORCE RTX 2080 Ti, 11 GB memory).

3.3.2. Comparative Baselines

In this work, the following baseline models are also designed to further confirm the
performance superiority of our proposed approach:

1. HA [12]: The average value of each airport arrival flow with the week as the interval
in the historical data (only the training dataset) is taken as the prediction results;

2. ANN: The ANN is constructed with five hidden layers, with neurons of [128, 256, 512,
1024, 60], respectively. The initial learning rate is 1 × 10−2. In addition, the model is
optimized by the MAE loss and the batch size is 32 during the training procedure;

3. GRU [31]: The GRU is configured with one layer and 512 hidden units. The ini-
tial learning rate is 1 × 10−2. The model is trained with batch size 32 and loss
function MAE;

4. GCN [29]: A two-layer GCN is employed in this experiment. The initial learning rate
is 1 × 10−2. The model is trained with batch size 32 and loss function MAE;

5. ATFPNet: the ATFPNet network is introduced in detail in Section 2.3.
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To underline the fair comparison of the network-level flow prediction performance,
the baselines share the same dataset (training and validation), and the unified size of the
input and output as the ATFPNet.

3.4. Experimental Results
3.4.1. The Number of Hidden Units in ATFPNet

In this section, we mainly focus on testing the optimal network architecture for the
prediction performance of the ATFPNet. The hidden units of the GRU block are set to [16,
32, 64, 100, 128]. The experiment results of the ATFP task are shown in Figure 5, in which
the horizontal and vertical axes denote the number of hidden units and different metrics,
respectively. It can be seen that the evaluation metrics of the proposed model show the
same trend in MAE and RMSE with increasing the hidden units. Specifically, the MAE
and the RMSE firstly increase then decrease whereas the ACC is the opposite. When the
number of hidden units increases to 64, the prediction precision is the maximum. As a
result, it can be concluded that the 64 hidden units are the optimal choice for the prediction
task in this work.

Figure 5. The comparison of predicted performance under different hidden units in the ATFPNet.

3.4.2. Comparative Results with Existing Approaches

The experimental results are listed in Table 5, in which the ATFPNet and other baselines
for different prediction horizons (from 30 to 120 min) are reported. From the results, it can
be found that the proposed approach achieves the best performance. Specifically, compared
with the baselines, with the increase of the prediction horizon, the ATFPNet obtains relative
improvements on the MAE from 0.8% to 17%, the RMSE from 0.76% to 10.6%, and the ACC
from 1.3% to 5.8%, respectively.

Table 5. The prediction results of the ATFPNet and other baseline methods on the real-world airport
traffic flow dataset from the CAAC.

Methods 30 min 45 min 60 min 120 min
RMSE MAE ACC RMSE MAE ACC RMSE MAE ACC RMSE MAE ACC

HA 2.290 1.621 0.666 2.290 1.621 0.666 2.290 1.621 0.666 2.290 1.621 0.666
ANN 2.203 1.451 0.671 2.206 1.464 0.670 2.213 1.502 0.669 2.226 1.513 0.668
GCN 2.153 1.421 0.680 2.155 1.436 0.678 2.156 1.454 0.672 2.160 1.484 0.671
GRU 2.090 1.381 0.693 2.092 1.383 0.691 2.101 1.391 0.690 2.118 1.403 0.682

ATFPNet 2.045 1.345 0.705 2.051 1.372 0.700 2.085 1.378 0.699 2.088 1.381 0.693

Furthermore, the following conclusions can also be obtained from the experimental results:
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1. In general, the neural network-based methods achieve a better performance than
the HA approach on all the prediction horizons. For the 30-min prediction horizon,
compared to the HA, the RMSE and the MAE obtained by the neural network-based
methods decrease by over 3.7% and 10.48%, respectively. From the perspective of air
traffic data, the HA approach fails to handle the complex nonstationary network-level
patterns of the time series data.

2. For the neural network approaches, the prediction performance of the ANN approach
is inferior to the others. The vanilla ANN fails to implement explicit spatial and
temporal modeling for the input features, which limits the model convergence and the
final performance. The GRU and the GCN baselines explicitly focus on the temporal
and the spatial modeling of the airport traffic flow, respectively, which obtain a
better performance compared to the ANN model. Specifically, compared to the GCN,
the GRU model yields better evaluation metrics due to the temporal essence of the
traffic flow.

3. As can be seen from the experimental results, except for the HA approach, the pre-
diction performance on all three metrics gradually degrades with the increase of the
prediction horizon (from 30 to 120 min). The results can be attributed to the HA
approach being a stationary approach that calculates the predicted value by averaging
historical inputs, that is, independent of the prediction horizon. The data-driven
baselines obtain better performance since they are able to leverage the input sequence
to learn the complex transition patterns. Compared to the GCN model, the GRU and
the proposed approach obtain a better performance, which confirms the contribution
of the temporal modeling for the multiple-step prediction task (long-term temporal
dependencies). Most importantly, by considering the desired temporal and spatial
modeling, the proposed approach achieves a higher performance than GRU for the
multiple-step prediction task. Specifically, the RMSE of ATFPNet is reduced from
0.7% to 2.1%, the MAE from 0.8% to 2.6%, respectively.

4. Among the listed baselines, both the GCN and ATFPNet explicitly consider the spatial
dependencies of the airport network to predict the airport arrival flow. The RMSE
of the GCN models is reduced by approximately from 2.2% to 2.9%, and the MAE is
improved from approximately 1.9% to 3.1% compared with the ANN model. In con-
trast to GCN (fails to achieve the temporal modeling), the RMSE of the ATFPNet is
approximately reduced from 3.2% to 5%, and the MAE is approximately reduced
from 4.4% to 7%. The experimental results show that both the temporal and spatial
dependencies make significant contributions to the airport arrival flow prediction,
which is the inspiration of the proposed approach.

4. Discussion

To further understand the proposed ATFPNet model, the Beijing international airport
(i.e., ZBAA) was selected to visualize the prediction results. The results with the prediction
horizons of 30-min, 60-min, 90-min, and 120-min are shown in Figures 6–9, respectively.
From the results, we can obtain the following conclusions:

1. The prediction error for peaking hours is generally larger than that of other opera-
tion times, which can illustrate that the spatial graph convolution (a smooth filter)
in the ATFPNet prefers to predict smaller changes. In addition, no flights oper-
ate in some branch airports for certain hours, in which the sparse inputs cause a
smoother prediction.

2. The prediction performance of the ATFPNet gradually decreases with the increase of
the prediction horizon. It can be attributed that the transition patterns of airport arrival
flow present higher non-linearity for a larger time window. The complexity of the
airport arrival flow increases dramatically, which further limits the model performance.

3. The ATFPNet can capture relatively long-term temporal dependencies among histori-
cal time slices. For example, as shown in Figure 9, when extending the interval to the
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120-min, the ATFPNet always can detect a variation trend of the arrival flow at the
given airport.

Although the performance is reduced for a larger prediction horizon, the proposed
ATFPNet still outperforms other baselines. Specifically, the performance for predicting the
120-min horizon obtained by the ATFPNet is even better than that of the predicting the
30-min horizon obtained by the GCN baseline. The results demonstrate that considering
both the spatial and temporal correlations can make the prediction model achieve the
desired performance.

Figure 6. The prediction results of the 30-min horizon.

Figure 7. The prediction results of the 60-min horizon.

Figure 8. The prediction results of the 90-min horizon.

Figure 9. The prediction results of the 120-min horizon.

5. Conclusions

In this paper, we construct a deep-learning-based model, called the airport traffic
flow prediction network (ATFPNet), to achieve the airport arrival flow prediction task.
The spatial graph convolution operator and gated recurrent unit are combined to capture
the transition patterns of airport traffic flow (departure and arrival). With respect to
the air transportation context, a specific graph representation is built based on the flight
schedule to illustrate the airport network. By further applying the GRU in the ATFPNet cell,
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the situational (network-level) multiple-step arrival flow can be achieved on the airport
network. A real-world airport traffic dataset is applied to validate the proposed approach,
and the experimental results show the performance superiority over other comparative
baselines, concerning several data-driven models. Compared to the GRU model, the RMSE
of ATFPNet is relatively improved from 0.7% to 2.1%. As for the GCN, the proposed
approach obtains a better performance, reducing the RMSE from 3.2% to 5%. In summary,
the airport network representation built on the flight schedule makes a great contribution
to the situational airport arrival flow prediction task, and the proposed ATFPNet has the
ability to capture the spatial and temporal features of airport traffic data.

In the future, except for the airport departure and arrival factors used in this pa-
per, we plan to explicitly consider other factors to improve prediction accuracy, for ex-
ample, weather information (visibility or thunderstorm), air traffic control information,
the influence of international flights, and dynamic traffic movements on the network.
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