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ABSTRACT 
 

The purpose of this article is to encourage students and teachers to use a simple technique for 
finding feasible solution of an LP. This technique is very simple but unfortunately not much practiced 
in the textbook literature yet. This article discusses an overview, advantages, computational 
experience of the method. This method provides some pronounced benefits over Dantzig’s simplex 
method phase 1. For instance, it does not require any kind of artificial variables or artificial 
constraints; it could directly start with any infeasible basis of an LP. Throughout the procedure it 
works in original variables space hence revealing the true underlying geometry of the problem. Last 
but not the least; it is a handy tool for students to quickly solve a linear programming problem 
without indulging with artificial variables. It is also beneficial for the teachers who want to teach 
feasibility achievement as a separate topic before teaching optimality achievement. Our primary 
result shows that this method is much better than simplex phase 1 for practical Net-lib problems as 
well as for general random LPs. 

 

Method Article 
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1. INTRODUCTION 
 
Linear programs frequently show up in various 
areas of applied sciences today. The prime 
reason for this is their tractability: Linear  
programs frame problems in optimization as a 
system of linear inequalities. This template                  
is general enough to express many          
different problems in engineering, operations 
research, economics, and even more        
abstract mathematical areas such as 
combinatorics.  
 
The linear programming problem is usually 
solved by incorporating one of the two 
algorithms: either with simplex algorithm or 
interior point algorithm. Both of the methods are 
extensively used these days and continue to 
contest with each other.  They have their own 
advantages and disadvantages in different 
contexts. For example interior point method has 
a big advantage that it has a polynomial time 
complexity to solve a general LP problem. But 
the Dantzig’s simplex method still seems to be 
the most efficient algorithm for great majority of 
practical problems because most of the practical 
problems are not “very large” when interior point 
becomes more efficient. Simplex method also 
exhibits efficiency when a problem needs to be 
re-solved with certain modifications. The 
complexity of IPM for a single iteration is O(n

3
) 

while that of simplex method is O(n2). So              
when handling large-scale problems even 
thousands of pivots of simplex method               
require considerably less effort as compared to a 
single IPM iteration. Also this factor                
provides simplex method an edge to perform 
sensitivity analysis more efficiently. Additionally 
simplex method so far is superior to IPM for 
solving (mixed) integer linear optimization 
problems. One reason contributing to this factor 
is that generating a cut requires a basic solution. 
   
Considering vast applicability of LPs in various 
fields, learning LPs has become an important 
part of undergraduate and graduate courses. 
Because of this many researchers are now 
focused on designing algorithms which are more 
efficient and easily implementable for classroom 
teaching. 
 

2. LITERATURE REVIEW 
 

Essentially the simplex method by Dantzig was 
developed to solve only the LPs having a known 

feasible solution, commonly referred as the  
initial basic feasible solution. For the LPs            
having no initial basic feasible solution,                 
almost all of the practical variants of simplex 
method suggest to apply the simplex method in 
two phases [1,2], called phase 1 and phase 2. In 
phase 1, a basic feasible solution is created by 
adding some (non-negative) artificial variables to 
the problem with an additional objective, equal to 
minimization of the sum of all the artificial 
variables, called SP1 objective. The purpose of 
phase 1 process is to maintain the feasibility              
and minimize the sum of artificial variables as 
much as possible. If phase 1 terminates with an 
objective value equal to zero, it implies that all 
artificial variables have reached value zero and 
the current basis has become feasible to the 
original problem, then return to the original 
objective and proceed with simplex phase 2. 
Otherwise, conclude that the problem has no 
solution. 
 
For a bit larger LPs, generally implementation of 
two phase simplex method significantly  
increases the number of variables, number of 
iterations and thus the complexity as well.              
From the point of view of class room teaching it 
often becomes a tedious job.  The above 
mentioned factors led to the need of              
developing more general algorithms for                    
solving a given linear program in which one may 
directly start from an initial infeasible basic 
solution.  
 
Papparrizos [3] presented an artificial                
variable free method but his method uses 
additional artificial constraint with a big-M 
number. His method also requires a tedious 
evaluation of series of additional objective 
functions besides the original objective              
function. Moreover  at  each  iteration  this  
algorithm  must  check  both  primal and  dual 
feasibility. 
     
Arsham [4,5] proposed an algorithm for general 
LP models in which he claimed that his algorithm 
will either provide a feasible solution or will 
declare infeasibility after a finite number of 
iterations. Enge and Huhn [6]  and Inayatullah, 
Touheed and Imtiaz [7]  presented counter 
examples in which Arsham’s algorithm is 
declaring a feasible problem inconsistent.  
 
Later on [8,9,10] presented an artificial-free 
algorithm named push and pull algorithm which 
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initiates with an incomplete basic variable set 
(BVS). As the algorithm proceeds the variables 
are brought in to the basis. The Push phase 
continues until the basic variable set is complete. 
This phase may terminate yielding an infeasible 
BVS. The problem then advances by starting the 
Pull Phase, which pulls the solution back to 
feasibility by incorporating pivot rules similar to 
the dual simplex method.  Arsham claims that the 
push and pull algorithm is artificial-free,   
however, his claim would be correct if we are 
only concerned with artificial variables, in                   
fact his method requires adding artificial 
constraints so his method is not truly an artificial 
free method. 
 
Serang [11] claimed that simplex method is so 
far still practically the best known pivot          
algorithm for solving LPs. But from teaching point 
of view the hurdle is that simplex method for 
feasibility (simplex phase 1) cannot be illustrated, 
prior to simplex method for optimality                    
(simplex phase 2). So, usually students                  
learn phase 2 before phase 1, which of course 
sounds unpleasant for both teachers and 
students.  
 
The main method (also discussed in [12]), is an 
easy to use alternative of simplex phase 1 
process which obviates the role of artificial 
variables by allowing negative variables into the 
basis. This method is artificial variable/constraint 
free so consequently avoid stalling and save 
degenerate pivots in many cases of linear 
programming problems. In this article we would 
call this method as Dynamic Phase 1(DP1). 
 
Most recently Inayatullah, Touheed and Imtiaz [7] 
constructed another artificial variable free version 
(may be considered as clone) of simplex phase 
1, called Art-free Simplex Method (ASM). The 
method is also artificial variable free as well as 
artificial constraint free version of simplex phase 
1. The authors showed that this method is 
computationally more efficient than simplex 
phase 1 because it saves unnecessary 
computations. The key difference between ASM 
and DP1 is that ASM follows the same 
sequences of pivots as simplex phase 1 does, 
even in the case of highly degenerate LPs 
whereas DP1 is not.  
        
Computationally DP1 is similar to ASM in the 
sense that it also saves unnecessary 
computations, while iterations-wise this DP1 may 
produce different sequence of pivots from the 
pivoting sequence of simplex method. The 

difference would arise only in the problems 
where degeneracy due to artificial variables 
occurs. Simplex method (hence also its artificial 
variable free clone ASM) has a technical flaw 
that it takes into account degenerate artificial 
variables in making the phase 1 objective, which 
is undoubtedly peripheral , because degenerate 
artificial variables do not actually reflect the 
infeasibility status of the problem. DP1 
overcomes the flaw using the refresh 
computation of the phase 1 objective in each 
iteration. DP1, in contrasting phase I                  
simplex method, does not require any abrupt 
changes in the LP structure to start with.               
Indeed it could start to avail feasibility at any  
time without making any adjustments in the 
simplex table. Unlike [8,9,10,3], it neither 
requires any artificial variable nor any artificial 
constraint. 
 
In this article we have denoted simplex                   
phase 1 and simplex phase 2 by SP1 and               
SP2 respectively, and dynamic phase 1 by      
DP1.  
 

3. ADVANTAGES OF DP1 
 
Several features of DP1 are alike ASM. For 
instance, it could start with any feasible or 
infeasible basis of an LP. In fact it could also be 
very useful for solving integer programming 
problems. This method solves general LP 
problem without any need of artificial variables 
which also makes it space efficient. Usually the 
learning sequence for simplex method is first 
SP2 and then SP1, because SP1 requires a 
prerequisite knowledge of SP2.  DP1 would be a 
fruitful tool for the teachers who want to                 
teach feasibility achievement as a separate            
topic before teaching optimality achievement, 
because working rule of this method can               
easily be demonstrated to the students having 
either a little or even no prior knowledge of 
simplex method for optimality (SP2). So after             
the development of DP1, the learning            
sequence would be to firstly learn DP1 and then 
SP2 i.e. it eradicates the need to illustrate SP2 
before SP1.     
 
Distinguishing features of DP1 over                       
ASM are, during ASM one may have to store the 
feasibility status of each variable by ‘+’ and ‘–’ 
flags. So, ASM is vulnerable to face            
infeasibility flagged degenerate variables. This 
issue effects ASM in the same way as 
degeneracy effects simplex method.                  
Despite DP1 is immune to such kind of                            
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pseudo infeasibilities, because it does not need 
any flags to show the feasibility status of a 
variable. 
 

3.1 Description of the Procedure DP1 
through an Example 

 

Consider the following linear system, 
 

0,,,,,,,,

122343

606542

244843

205

4423311

987654321

94321

84321

74321

64321

54321













xxxxxxxxx

xxxxx

xxxxx

xxxxx

xxxxx

xxxxx

 

 

For the initial basis B, setting B = {5,6,7,8,9}, is 
the easiest choice. So corresponding N = 
{1,2,3,4}. Here it could be observed that negative 
right-hand side values could be used as a 
tentative infeasibility measure of each constraint 
for current basis. For example 1st, 2nd and 3rd 
constraints are infeasible by 44, 20 and 24 units 
of slack values. In all, current basis is infeasible 
by 88 units. Let us construct an objective function 
of minimizing overall infeasibility (negative sum 
of basic infeasible variables) of the problem. That 

is 765)( xxxBcisMinimize  . 

Where cis(B) stands for cumulative infeasibility 
status and its value could be obtained for a basis 

B, by setting all non-basic variables Nx  equal to 

zero.  In general 



Biix
ixBcis

,0

)( . 

 

On replacing the basic variables in terms of non-
basic variables, cis(B) becomes  
 

88679)( 321  xxxBcisMinimize . 

 

The cis(B) function is an alternative to traditional 
phase 1 objective function of minimizing artificial 
variables. In this function the constant value 88 is 
unimportant, so to compute the coefficients only, 
one would have to just vertically sum-up the 
coefficients of non-basic variables in the 
constraints with negative right hand side. The 
coefficient vector of cis function is denoted by w, 

in this case ]6,7,9[ w .  

 

3.1.1 Selection of entering variable 
 

Like SP1, this method (DP1) also follows a 
gradient ascent approach that iteratively 

decreases the value of cis, while maintaining 
feasibility of basic variables. From the expression 
of objective function it is clear that any increase 

in values of the non-basic variables 21, xx and 

3x would decrease value of cis. So, 21, xx

and 3x are all candidate entering         

variables.  
 
The rules of selecting an entering basic variable 
among all candidate entering variables are 
usually known as Pricing Rules. So far many 
pricing rules have been developed for               
entering variables, some of which are, Dantzig’s 
most negative coefficient rule [1] steepest               
edge rule [13], Devex rule [14], Minimum angle 
method [15], Largest-distance rule [16], Nested 
Pricing rule [17] Nested largest-distance rule 
[18].   
 
In this paper we would use Dantzig’s most 
negative coefficient criteria for selection of 
entering variable. According to this criteria, 
preferred entering variable is the variable along 
which cis has highest decreasing rate. So in the 
above example, x1 would be our preferred 
entering basic variable. 

                
3.1.2 Selection of leaving variable 
 
Dantzig’s ratio test (DRT) suggests selecting that 
basic variable as leaving which imposes the most 
stringent upper bound on the increase of the 
entering variable.  
 
An easier way to identify leaving variable is to 
examine the ratios of right hand side of the 
constraints to the corresponding coefficients of 
the entering variable, x1, as shown in the 
following Table 1. 
 
3.1.3 Pivot operation 

 
In this step we perform elementary row 
operations to obtain a new equivalent LPP with 
new basis.  
 
3.2.4 Refreshing the objective function 

 
After each change of basis (pivot operation), if 
infeasibility is not completely removed, re-
compute the cis(B) function.     
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Table 1. Differential constraint coefficients of non-negative ratio for selective variables 
 
Basic Constraint 

coefficients of 
entering variable x1 

Right hand 
side value 

Non-negative ratio 
(or intercept) 

Selected 
ratio 

Preferred 
leaving variable 

x5 -11 -44  11
44

1x 4 4 (min) x5 

x6 -1 -20 201
20

1 x    

x7 +3 -24 (ignored)   
x8 2 60  2

60
1x 30   

x9 3 66  3
66

1x 22   

Note: In the column of ratios we only consider variable with non-negative ratios because leaving variable only 
with non-negative ratios, restricts the entering variable. Preferred leaving variable is the variable corresponding to 

minimum of these ratios. 
 

4. THE DYNAMIC PHASE 1 METHOD: [12] 
 

To formally develop the algorithm we’ll use the 
following dictionary notation originally introduced 
by Chvatal [19] but used in a slightly different 
form by Khan et al. [20].  
 

The dictionary of any LP for a basis B, may be 
element-wise represented in the following 
collection of equations, denoted by D(B), which is 
slightly modified form of Chvatal [21]  Kaluzny 
[22]. 
 






























zxzMaximize

Bixx

BD

Nj
jj

i
Nj

jiji

ˆ

,

)(




           (1) 

Where  i is the component of vector 

B
BA   1b representing value of the basic 

variable ix , ij is the element of 
NB

NB AA   1

denoting the coefficient of the non-basic variable 

jx in the equation containing basic variable ix ,

j is the component of 
NT

NB
T
B

T
N AA   )( 1cc

representing the coefficient of  non-basic variable 

jx in the objective function of the current 

dictionary, and   bc 1ˆ B
T
B Az  is the objective 

scalar value associated with current basis B. A 
basis B(or a dictionary D(B)) is said to be 

feasible if 0i  for all Bi .
 

As discussed in the last section, We can formally describe cis(B)  as follows,     
 





0:

)(
ii

ixBcis
                                                                                                                          (2)

 

 

Or equivalently in the form of non-basic variables,  
 

 
 
















0:

)(
ii Nj

jiji xBcis




                                                                                                 (3)

 

 

On simplification we get, 
 

 
 

















0:0:

)(
ii

i
Nj ii

jij xBcis


    



0: ii

i
Nj

jj xw




                                                          (4)

 

 

where 



0: ii

ijjw


 , Nj  . We would call swj '  as components of cumulative infeasibility vector 

(civ) w(B).    
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Lemma 4.1: 
 

For a basis B, if all 0)( Bwj then the associated problem is primal inconsistent.  

 
Proof: 
 

Associated cis function for would be, 
 

  



0:0:

)(
ii

i
Nj

jj

ii
i xwxBcis



  

 

 Implies that     



0:0: ii

i

ii
i

Nj
jj xxw





 
 
Which is a clearly impossible for any feasible (non-negative) solution x because  
 

  0
0:

 
 ii

i
Nj

jj xxw


and 0
0:


ii

i


 .   ■ 

 
Problem 1  
 

Given a dictionary D(B), obtain a primal feasible basis if exists. 
 
Algorithm: Dynamic Phase 1 (DP1) 
 

Step 1:    Let S be a maximal subset of B such that },0β|{ BssS s  . If S  then basis B is 

primal feasible. Exit. 
 

Step 2: Construct a row-vector w
N such that 




Ss

sjjw  .  

Step 3: Let NK   such that },0:{ NjwjK j  . If K , according to Lemma 3.1 basis 

B is primal inconsistent. Exit. 
 

Step 4: Choose Kk such that hk ww  Kh  

 (Ties could be broken on minimum index) 
 

Step 5:  Choose Br  such that  

     BiBir ikiik

i
ikiik

i  ,0,0:,0,0:minarg 







  

 (Ties could be broken on minimum index) 
 

Step 6: Make a pivot on ),( kr   (  Set }{\}){(: rkBB  , }{\}){(: krNN   and update 

D(B)). 
 
Step 7:      Go to Step 1. 
 
Theorem 4.2: The dynamic phase 1 is guaranteed to stop in a finite number of iterations if there is no 
degeneracy. 

Proof: There are only a finite number bases, clearly not more than 








m

n
, and every non-degenerate 

pivot performed according to step 4 and step 5 strictly increase the value of the cis(B) function. This 
implies that a basis cannot be encountered twice. ■ 
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Example 1 
 

Obtain a feasible basis of the following system of equations using DP1. 
 

510797

303460

22

505100

1020

8321

7321

6321

5321

4321











xxxx

xxxx

xxxx

xxxx

xxxx

 
0,0,0,0,0,000 87654321  xxxxxxxx ,,

 
 

By taking initially }3,2,1{},8,7,6,5,4{  NB , we can construct the associated dictionary D(B) [20] 

(because objective function z is not given, we omitted z-row here)  of the above problem as 
 

































107975

346030

2112

5110050

112010

8

7

6

5

4

321

 

 

Here  0,0,0 875  8,7,5S . Clearly, current basis is infeasible.  

So, row vector 
NB )(w  would be  

 1874153

321

w
 

The small number written above each component of w-vector is its index number. According to 
Dantzig’s pricing rule described in step 4, we get k = 1 so entering basic variable is x1 and according 
to the ratio test rule as described in step 5, we get r = 4 so the leaving basic variable is ‘x4’. Perform 

the pivot operation on  1,4  

































20/20720/157320/72/17

0130

20/3920/1920/12/5

0450

20/120/120/12/1

8

7

6

5

1

324b

 

 

Iteration 2: Now, }3,2,4{},8,7,6,5,1{  NB . As   08
 8S . Re-compute 

Nw for new 

dictionary.  
 

 20/20720/157320/7w

324

  
 

Here 7 and 2  rk , perform pivot on  2 ,7 ,  
 





























20/20720/15735/11782/17

0130

20/3920/195/142/5

04170

20/120/15/12/1

8

2

6

5

1

374b
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Iteration 3: 
 

Here  08
 8S . Re-compute w -vector for this new dictionary.  

 20/20720/15735/1178

374

w
 

 

8 and 3  rk , perform pivot on  3 ,8  
 





























207/20207/1573207/4712207/170

0130

69/1369/108869/325669/283

04170

207/1207/89207/277207/95

3

2

6

5

1

874b

 
 

Since  S The current basis }3,2,6,5,1{B is primal feasible. 

 

Remark 4.3: 
 

If the above problem would have solved by SP1 
or ASM it requires 6 iterations and as shown 
above if it were solved by DP1 it just needs 3 
iterations.   
 
Remark 4.4: 
 

There are some similarities and dissimilarities 
between SP1 and DP1. 
Dissimilarities: SP1 starts with a pseudo 
(artificial) primal feasible basis and DP1 could 
start directly from any primal infeasible basis.  In 
the start of every iteration, DP1 freshly computes 
its objective function cis for current basis but on 
the other hand SP1 keeps tracking its original 
objective function (SP1 objective function).  
 

Similarities: Both the methods analogously 
preserve the existing feasibility of basic variables 
and initiate with an equivalent objective of 
minimizing cumulative infeasibilities in the basic 
variables.  
 

Remark 4.5:  
 

DP1 has some advantages over SP1. 
 

 In SP1 underlying geometry of original 
problem is hidden under superimposed 
framework of artificial variables but in 
DP1 it is not.  

 SP1 may face a situation in which 
feasibility is achieved but the method 

didn’t show it up, because of          
degenerate artificial variables. Despite 
DP1 doesn’t need any artificial variables, 
so it is invulnerable of such 
circumstances. 

 DP1 gives full freedom to user in the 
construction of initial basis, for example in 
an equality constraint, a variable of any 
sign (positive or negative) having 
coefficient 1 and zero in other constraints 
could be taken as basic variable.  Unlike 
SP1 which obliges to take artificial 
variables into the initial basis. It means that 
DP1 gives opportunity to put any original 
variable from the constraint into the basis 
without needing to introduce any extra 
variables (i.e. artificial variables).     

 

Example 2 
 

Consider the following system of inequalities, 
 

51027

25750

1020

321

321

321







xxx

xxx

xxx
 

0,00 321  xxx ,
 

 
By adding non-negative slack variables x4, x5 and 

x6 and taking }3,2,1{},6,5,4{  NB , we can 

construct the associated dictionary D(B) (here 
because objective function z is not given, we 
omitted z-row)  of the above problem as 
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Initial dictionary: 
 

























10275

175025

112010

6

5

4

321b

 

Here
 

 11943
321

w
 

 

Pivot on (4,1) 
 























20/20720/4720/72/17

2/32/92/50

20/120/120/12/1

6

5

1

324b

 

 
 20/20720/4720/7Here

324

w
 

  

Pivot on (5,3)  























10/695/16710/1692/17

3/233/50

30/15/130/12/1

6

3

1

524b

 

 10/695/16710/169Here

524

w  
       
According to step 3, the last w-vector shows that the problem is primal inconsistent. 
 

5. APPLICATIONS 
 

Since DP1 is an efficient alternative to the 
SP1 as well as to ASM. So it can effectively 
be incorporated in the solution process of 
linear programming problems, integer 
programming problems, sensitivity analysis, 
parametric programming etc. It can become 
an essential tool which can directly be 
employed by researchers in solving various 
problems of diverse fields like biological 
sciences and engineering for example: 
biological sciences [23,24], medical sciences 
[25,26], biochemical sciences [27], mechanical 
engineering [28] etc. 
 

6. COMPUTATIONAL RESULTS 
 

In this section Table 2 and Table 3 present a 
comparison of the computational results of DP1 
algorithm with the SP1.  Using random models 
suggested by Kaluzny [22] we generated 250 
consistent linear programs and 250 inconsistent 
linear programs with the associated dictionary 

coefficients 
ij  ,  and ij  chosen randomly from 

the integer interval [−50,50]. The results of both 
consistent and inconsistent problems exhibit that 
on average DP1 is better than SP1. For example 
to determine consistency of  LPs of orders 
50×50, on average DP1 saved 3.16% and to 
determine inconsistency of LPs of orders 50×70, 
on average DP1 saved 5.43%  iterations.   
 

For further testing on practical problems, we 
executed both the algorithms on Net-Lib test 
problems [29] which reveal that on most Net-lib 
problems (e.g. SCTAP2, SCSD8, SCSD6, 
SCAGR25, SCTAP3 etc.) DP1 is more efficient 
because number of iterations taken by DP1 
much lesser than SP1.  The results have been 
summarized in Table 4. 
 

The above comparisons in between DP1 and 
SP1 strengthen that DP1 is more practically 
efficient then SP1 in terms of number of 
iterations.  
 
Now we would turn our focus on comparison of 
DP1 and SP1 in terms of basic arithmetic 
operations (e.g. additions and multiplications). 
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Fig. 1 and Fig. 2 depict the comparison of DP1 
and SP1 based on the average number of 
multiplication and addition operations needed to 

solve LP problems of differentsizes which have 
been sorted according to increasing sizes of the 
coefficient matrix. 

 

Table 2. Comparison in terms of average iterations on random consistent LPs 
 

Order SP1 DP1 % of saved iterations 
3x3 1.432 1.432 0.00% 
3x5 1.76 1.76 0.00% 
3x7 1.796 1.796 0.00% 
5x5 2.913 2.821248 3.14% 
5x10 3.191 3.1120472 2.46% 
7x5 4.177 4.1109268 1.59% 
7x10 5.082 5.0063368 1.50% 
10x5 6.117 6.052 1.06% 
10x10 8.128 8.0029756 1.54% 
10x20 7.623 7.44496 2.33% 
10x25 7.628 7.4749696 2.00% 
15x15 14.407 14.10663 2.08% 
15x20 14.359 14.070997 2.00% 
20x20 22.167 21.720171 2.02% 
20x30 20.164 20.004 0.79% 
30x30 41.361 40.325434 2.50% 
40x40 66.660 65.727074 1.40% 
50x50 102.079 98.849477 3.16% 
50x70 87.842 85.170342 3.04% 
50x100 60.9154 60.492 0.70% 
70x50 172.832 170.84423 1.15% 
70x70 187.799 185.66 1.14% 
70x100 152.531 147.90194 3.03% 
80x80 231.531 227.60356 1.70% 
90x90 287.652 286.29242 0.47% 
100x100 347.511 341.27314 1.79% 

 

 
 

Fig. 1. Comparison of DP1 and SP1 in terms of multiplication operations 
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Table 3. Comparison in terms of average iterations on random inconsistent LPs 
 

Order SP1 DP1 % of saved iterations 
3x3 0.96 0.96 0.00% 
3x5 1.332 1.332 0.00% 
3x7 1.381 1.38 0.00% 
5x5 2.533 2.3588768 6.88% 
5x10 3.571 3.4343948 3.84% 
7x5 3.293 3.044394 7.54% 
7x10 5.001 4.8670508 2.67% 
10x5 4.236 3.94 6.99% 
10x10 7.328 7.0200144 4.21% 
10x20 10.076 8.88987 11.77% 
10x25 11.465 10.943229 4.55% 
15x15 12.884 12.012213 6.76% 
15x20 15.643 15.282512 2.30% 
20x20 20.385 20.057307 1.61% 
20x30 27.136 26.868 0.99% 
30x30 41.398 40.376639 2.47% 
40x40 66.911 65.922074 1.48% 
50x50 94.007 91.020514 3.18% 
50x70 125.203 118.40621 5.43% 
50x100 136.697 131.508 3.80% 
70x50 108.923 107.294 1.50% 
70x70 174.128 172.136 1.14% 
70x100 230.393 220.19861 4.42% 
80x80 219.281 214.98955 1.96% 
90x90 279.052 276.24393 1.01% 
100x100 317.426 310.88034 2.06% 

 

 
 

Fig. 2. Comparison of DP1 and SP1 in terms of addition operations 
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Table 4. Comparison in terms of number of iterations taken on Net-Lib test problems 
 

S. No. Problem Title Size SP1 DP1 % of saved iterations 
1 ADLITTLE 56x97 22 23 −4.55% 
2 AFIRO 27x32 6 6 0.00% 
3 AGG2 516x302 47 47 0.00% 
4 AGG3 516x302 37 37 0.00% 
5 BANDM 305 x 472 9277 9911 −6.83% 
6 BEACONFD 173x262 89 89 0.00% 
7 BNL1 643x1175 8486 6914 18.52% 
8 E226 223x282 128 133 −3.91% 
9 FFFFF800 524x854 2001 1303 34.88% 
10 ISRAEL 174x142 8 8 0.00% 
11 SCAGR25 471x500 2051 1264 38.37% 
12 SCAGR7 129x140 249 260 −4.42% 
13 SCFXM2 660x914 1378 1265 8.20% 
14 SCFXM3 990x1371 2408 1851 23.13% 
15 SCORPION 388x358 398 369 7.29% 
16 SCSD1 77x760 121 121 0.00% 
17 SCSD6 147x1350 297 173 41.75% 
18 SCSD8 397x2750 2784 1628 41.52% 
19 SCTAP2 1090x1880 1910 929 51.36% 
20 SCTAP3 1480x2480 1923 1234 35.83% 
21 SHARE2B 96x79 120 119 0.83% 
22 STOCFOR1 117x111 56 56 0.00% 
     12.82% 

 

 
 

Fig. 3. Graphs showing percentage of computations saved by DP1 over SP1 
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The tables illustrate that (either we consider 
multiplications or additions) DP1 always need 
less number of operation computations as 
compared to SP1. This difference becomes quite 
remarkable especially for the problems that have 
greater number of constraints as compared to 
the number of variables. So, it is empirically 
observed that like its recent predecessor ASM [7] 
DP1 is much advantageous when “number of 
constraints minus number of variables” is a large 
number. This observation could be verified by the 
graph as depicted in Fig. 3, as the value of 

nm  increases the percentage of saved 
computations in DP1 also increases. For 
example for a 13590 order problem the average 
saving in computations is just about 10% but in 

contrast to a 1590  order problem it reaches a 
significant level of 80%.  This fact can also be 

seen in the problems of order 9030 , 3090 ,

9050  and 5090 . For the problems having
nm  , the savings in number of computations is 

not much high. Basic theory of duality asserts 
that in contrast to DP1, the dual version of DP1 
would be more efficient computationally when 

mn   is large. 
 

7. CONCLUSION 
 
In this article efficient variants of simplex method 
for feasibility (named DP1) have been discussed. 
This method does not need any kind of artificial 
variables or artificial constraints; it could directly 
start with any infeasible basis of an LP, providing 
full freedom to the user that whether to start with 
primal DP1 or dual DP1 without making any 
abrupt changes to the LP structure. Primary 
computational results showed that the method 
requires much lesser number of iterations as of 
SP1 on Netlib test problems. Computational 
results for basic arithmetic operations showed 
that DP1 is more efficient when nm  is large.  
Hence the method also provides great benefits in 
class room teaching by eliminating the relatively 
difficult and tedious calculations of artificial 
variables and constraints. It is also a teaching aid 
for the teachers who want to teach feasibility 
achievement as a separate topic before teaching 
optimality achievement. It is very helpful tool in 
integer programming and sensitivity analysis, 
because it provides an option to avoid dual 
simplex method. 
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