Study on Numerical Simulation Methods for Hypervelocity Impact on Large-Scale Complex Spacecraft Structures

Zhang, Yanxi and An, Fengjiang and Liao, Shasha and Wu, Cheng and Liu, Jian and Li, Yipeng (2021) Study on Numerical Simulation Methods for Hypervelocity Impact on Large-Scale Complex Spacecraft Structures. Aerospace, 9 (1). p. 12. ISSN 2226-4310

[thumbnail of aerospace-09-00012-v2.pdf] Text
aerospace-09-00012-v2.pdf - Presentation

Download (23MB)

Abstract

This paper aims to study the difference of results in breakup state judgment, debris cloud and fragment characteristic parameter during hypervelocity impact (HVI) on large-scale complex spacecraft structures by various numerical simulation methods. We compared the results of the test of aluminum projectile impact on an aluminum plate with the simulation results of the smooth particle hydrodynamics (SPH), finite element method (FEM)-smoothed particle Galerkin (SPG) fixed coupling method, node separation method, and finite element method-smooth particle hydrodynamics adaptive coupling method under varying mesh/particle sizes. Then based on the test of the complex simulated satellite under hypervelocity impact of space debris, the most applicable algorithm was selected and used to verify the accuracy of the calculation results. It was found that the finite element method-smooth particle hydrodynamics adaptive coupling method has lower mesh sensitivity in displaying the contour of the debris cloud and calculating its characteristic parameters, making it more suitable for the full-scale numerical simulation of hypervelocity impact. Moreover, this algorithm can simulate the macro breakup state of the full-scale model with complex structure and output debris fragments with clear boundaries and accurate shapes. This study provides numerical simulation method options for the follow-up research on breakup conditions, damage effects, debris clouds, and fragment characteristics of large-scale complex spacecraft.

Item Type: Article
Subjects: Open Asian Library > Engineering
Depositing User: Unnamed user with email support@openasianlibrary.com
Date Deposited: 27 Mar 2023 06:27
Last Modified: 21 Oct 2024 04:19
URI: http://publications.eprintglobalarchived.com/id/eprint/767

Actions (login required)

View Item
View Item